LAPACK 3.3.1
Linear Algebra PACKage

sla_gercond.f

Go to the documentation of this file.
00001       REAL FUNCTION SLA_GERCOND ( TRANS, N, A, LDA, AF, LDAF, IPIV,
00002      $                            CMODE, C, INFO, WORK, IWORK )
00003 *
00004 *     -- LAPACK routine (version 3.2.1)                                 --
00005 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
00006 *     -- Jason Riedy of Univ. of California Berkeley.                 --
00007 *     -- April 2009                                                   --
00008 *
00009 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
00010 *     -- Univ. of California Berkeley and NAG Ltd.                    --
00011 *
00012       IMPLICIT NONE
00013 *     ..
00014 *     .. Scalar Arguments ..
00015       CHARACTER          TRANS
00016       INTEGER            N, LDA, LDAF, INFO, CMODE
00017 *     ..
00018 *     .. Array Arguments ..
00019       INTEGER            IPIV( * ), IWORK( * )
00020       REAL               A( LDA, * ), AF( LDAF, * ), WORK( * ),
00021      $                   C( * )
00022 *    ..
00023 *
00024 *  Purpose
00025 *  =======
00026 *
00027 *     SLA_GERCOND estimates the Skeel condition number of op(A) * op2(C)
00028 *     where op2 is determined by CMODE as follows
00029 *     CMODE =  1    op2(C) = C
00030 *     CMODE =  0    op2(C) = I
00031 *     CMODE = -1    op2(C) = inv(C)
00032 *     The Skeel condition number cond(A) = norminf( |inv(A)||A| )
00033 *     is computed by computing scaling factors R such that
00034 *     diag(R)*A*op2(C) is row equilibrated and computing the standard
00035 *     infinity-norm condition number.
00036 *
00037 *  Arguments
00038 *  ==========
00039 *
00040 *     TRANS   (input) CHARACTER*1
00041 *     Specifies the form of the system of equations:
00042 *       = 'N':  A * X = B     (No transpose)
00043 *       = 'T':  A**T * X = B  (Transpose)
00044 *       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
00045 *
00046 *     N       (input) INTEGER
00047 *     The number of linear equations, i.e., the order of the
00048 *     matrix A.  N >= 0.
00049 *
00050 *     A       (input) REAL array, dimension (LDA,N)
00051 *     On entry, the N-by-N matrix A.
00052 *
00053 *     LDA     (input) INTEGER
00054 *     The leading dimension of the array A.  LDA >= max(1,N).
00055 *
00056 *     AF      (input) REAL array, dimension (LDAF,N)
00057 *     The factors L and U from the factorization
00058 *     A = P*L*U as computed by SGETRF.
00059 *
00060 *     LDAF    (input) INTEGER
00061 *     The leading dimension of the array AF.  LDAF >= max(1,N).
00062 *
00063 *     IPIV    (input) INTEGER array, dimension (N)
00064 *     The pivot indices from the factorization A = P*L*U
00065 *     as computed by SGETRF; row i of the matrix was interchanged
00066 *     with row IPIV(i).
00067 *
00068 *     CMODE   (input) INTEGER
00069 *     Determines op2(C) in the formula op(A) * op2(C) as follows:
00070 *     CMODE =  1    op2(C) = C
00071 *     CMODE =  0    op2(C) = I
00072 *     CMODE = -1    op2(C) = inv(C)
00073 *
00074 *     C       (input) REAL array, dimension (N)
00075 *     The vector C in the formula op(A) * op2(C).
00076 *
00077 *     INFO    (output) INTEGER
00078 *       = 0:  Successful exit.
00079 *     i > 0:  The ith argument is invalid.
00080 *
00081 *     WORK    (input) REAL array, dimension (3*N).
00082 *     Workspace.
00083 *
00084 *     IWORK   (input) INTEGER array, dimension (N).
00085 *     Workspace.2
00086 *
00087 *  =====================================================================
00088 *
00089 *     .. Local Scalars ..
00090       LOGICAL            NOTRANS
00091       INTEGER            KASE, I, J
00092       REAL               AINVNM, TMP
00093 *     ..
00094 *     .. Local Arrays ..
00095       INTEGER            ISAVE( 3 )
00096 *     ..
00097 *     .. External Functions ..
00098       LOGICAL            LSAME
00099       EXTERNAL           LSAME
00100 *     ..
00101 *     .. External Subroutines ..
00102       EXTERNAL           SLACN2, SGETRS, XERBLA
00103 *     ..
00104 *     .. Intrinsic Functions ..
00105       INTRINSIC          ABS, MAX
00106 *     ..
00107 *     .. Executable Statements ..
00108 *
00109       SLA_GERCOND = 0.0
00110 *
00111       INFO = 0
00112       NOTRANS = LSAME( TRANS, 'N' )
00113       IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T')
00114      $     .AND. .NOT. LSAME(TRANS, 'C') ) THEN
00115          INFO = -1
00116       ELSE IF( N.LT.0 ) THEN
00117          INFO = -2
00118       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
00119          INFO = -4
00120       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
00121          INFO = -6
00122       END IF
00123       IF( INFO.NE.0 ) THEN
00124          CALL XERBLA( 'SLA_GERCOND', -INFO )
00125          RETURN
00126       END IF
00127       IF( N.EQ.0 ) THEN
00128          SLA_GERCOND = 1.0
00129          RETURN
00130       END IF
00131 *
00132 *     Compute the equilibration matrix R such that
00133 *     inv(R)*A*C has unit 1-norm.
00134 *
00135       IF (NOTRANS) THEN
00136          DO I = 1, N
00137             TMP = 0.0
00138             IF ( CMODE .EQ. 1 ) THEN
00139                DO J = 1, N
00140                   TMP = TMP + ABS( A( I, J ) * C( J ) )
00141                END DO
00142             ELSE IF ( CMODE .EQ. 0 ) THEN
00143                DO J = 1, N
00144                   TMP = TMP + ABS( A( I, J ) )
00145                END DO
00146             ELSE
00147                DO J = 1, N
00148                   TMP = TMP + ABS( A( I, J ) / C( J ) )
00149                END DO
00150             END IF
00151             WORK( 2*N+I ) = TMP
00152          END DO
00153       ELSE
00154          DO I = 1, N
00155             TMP = 0.0
00156             IF ( CMODE .EQ. 1 ) THEN
00157                DO J = 1, N
00158                   TMP = TMP + ABS( A( J, I ) * C( J ) )
00159                END DO
00160             ELSE IF ( CMODE .EQ. 0 ) THEN
00161                DO J = 1, N
00162                   TMP = TMP + ABS( A( J, I ) )
00163                END DO
00164             ELSE
00165                DO J = 1, N
00166                   TMP = TMP + ABS( A( J, I ) / C( J ) )
00167                END DO
00168             END IF
00169             WORK( 2*N+I ) = TMP
00170          END DO
00171       END IF
00172 *
00173 *     Estimate the norm of inv(op(A)).
00174 *
00175       AINVNM = 0.0
00176 
00177       KASE = 0
00178    10 CONTINUE
00179       CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
00180       IF( KASE.NE.0 ) THEN
00181          IF( KASE.EQ.2 ) THEN
00182 *
00183 *           Multiply by R.
00184 *
00185             DO I = 1, N
00186                WORK(I) = WORK(I) * WORK(2*N+I)
00187             END DO
00188 
00189             IF (NOTRANS) THEN
00190                CALL SGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
00191      $            WORK, N, INFO )
00192             ELSE
00193                CALL SGETRS( 'Transpose', N, 1, AF, LDAF, IPIV,
00194      $            WORK, N, INFO )
00195             END IF
00196 *
00197 *           Multiply by inv(C).
00198 *
00199             IF ( CMODE .EQ. 1 ) THEN
00200                DO I = 1, N
00201                   WORK( I ) = WORK( I ) / C( I )
00202                END DO
00203             ELSE IF ( CMODE .EQ. -1 ) THEN
00204                DO I = 1, N
00205                   WORK( I ) = WORK( I ) * C( I )
00206                END DO
00207             END IF
00208          ELSE
00209 *
00210 *           Multiply by inv(C**T).
00211 *
00212             IF ( CMODE .EQ. 1 ) THEN
00213                DO I = 1, N
00214                   WORK( I ) = WORK( I ) / C( I )
00215                END DO
00216             ELSE IF ( CMODE .EQ. -1 ) THEN
00217                DO I = 1, N
00218                   WORK( I ) = WORK( I ) * C( I )
00219                END DO
00220             END IF
00221 
00222             IF (NOTRANS) THEN
00223                CALL SGETRS( 'Transpose', N, 1, AF, LDAF, IPIV,
00224      $            WORK, N, INFO )
00225             ELSE
00226                CALL SGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
00227      $            WORK, N, INFO )
00228             END IF
00229 *
00230 *           Multiply by R.
00231 *
00232             DO I = 1, N
00233                WORK( I ) = WORK( I ) * WORK( 2*N+I )
00234             END DO
00235          END IF
00236          GO TO 10
00237       END IF
00238 *
00239 *     Compute the estimate of the reciprocal condition number.
00240 *
00241       IF( AINVNM .NE. 0.0 )
00242      $   SLA_GERCOND = ( 1.0 / AINVNM )
00243 *
00244       RETURN
00245 *
00246       END
 All Files Functions