LAPACK 3.3.1
Linear Algebra PACKage

dgetrs.f

Go to the documentation of this file.
00001       SUBROUTINE DGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
00002 *
00003 *  -- LAPACK routine (version 3.3.1) --
00004 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00005 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00006 *  -- April 2011                                                      --
00007 *
00008 *     .. Scalar Arguments ..
00009       CHARACTER          TRANS
00010       INTEGER            INFO, LDA, LDB, N, NRHS
00011 *     ..
00012 *     .. Array Arguments ..
00013       INTEGER            IPIV( * )
00014       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
00015 *     ..
00016 *
00017 *  Purpose
00018 *  =======
00019 *
00020 *  DGETRS solves a system of linear equations
00021 *     A * X = B  or  A**T * X = B
00022 *  with a general N-by-N matrix A using the LU factorization computed
00023 *  by DGETRF.
00024 *
00025 *  Arguments
00026 *  =========
00027 *
00028 *  TRANS   (input) CHARACTER*1
00029 *          Specifies the form of the system of equations:
00030 *          = 'N':  A * X = B  (No transpose)
00031 *          = 'T':  A**T* X = B  (Transpose)
00032 *          = 'C':  A**T* X = B  (Conjugate transpose = Transpose)
00033 *
00034 *  N       (input) INTEGER
00035 *          The order of the matrix A.  N >= 0.
00036 *
00037 *  NRHS    (input) INTEGER
00038 *          The number of right hand sides, i.e., the number of columns
00039 *          of the matrix B.  NRHS >= 0.
00040 *
00041 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
00042 *          The factors L and U from the factorization A = P*L*U
00043 *          as computed by DGETRF.
00044 *
00045 *  LDA     (input) INTEGER
00046 *          The leading dimension of the array A.  LDA >= max(1,N).
00047 *
00048 *  IPIV    (input) INTEGER array, dimension (N)
00049 *          The pivot indices from DGETRF; for 1<=i<=N, row i of the
00050 *          matrix was interchanged with row IPIV(i).
00051 *
00052 *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
00053 *          On entry, the right hand side matrix B.
00054 *          On exit, the solution matrix X.
00055 *
00056 *  LDB     (input) INTEGER
00057 *          The leading dimension of the array B.  LDB >= max(1,N).
00058 *
00059 *  INFO    (output) INTEGER
00060 *          = 0:  successful exit
00061 *          < 0:  if INFO = -i, the i-th argument had an illegal value
00062 *
00063 *  =====================================================================
00064 *
00065 *     .. Parameters ..
00066       DOUBLE PRECISION   ONE
00067       PARAMETER          ( ONE = 1.0D+0 )
00068 *     ..
00069 *     .. Local Scalars ..
00070       LOGICAL            NOTRAN
00071 *     ..
00072 *     .. External Functions ..
00073       LOGICAL            LSAME
00074       EXTERNAL           LSAME
00075 *     ..
00076 *     .. External Subroutines ..
00077       EXTERNAL           DLASWP, DTRSM, XERBLA
00078 *     ..
00079 *     .. Intrinsic Functions ..
00080       INTRINSIC          MAX
00081 *     ..
00082 *     .. Executable Statements ..
00083 *
00084 *     Test the input parameters.
00085 *
00086       INFO = 0
00087       NOTRAN = LSAME( TRANS, 'N' )
00088       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
00089      $    LSAME( TRANS, 'C' ) ) THEN
00090          INFO = -1
00091       ELSE IF( N.LT.0 ) THEN
00092          INFO = -2
00093       ELSE IF( NRHS.LT.0 ) THEN
00094          INFO = -3
00095       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
00096          INFO = -5
00097       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
00098          INFO = -8
00099       END IF
00100       IF( INFO.NE.0 ) THEN
00101          CALL XERBLA( 'DGETRS', -INFO )
00102          RETURN
00103       END IF
00104 *
00105 *     Quick return if possible
00106 *
00107       IF( N.EQ.0 .OR. NRHS.EQ.0 )
00108      $   RETURN
00109 *
00110       IF( NOTRAN ) THEN
00111 *
00112 *        Solve A * X = B.
00113 *
00114 *        Apply row interchanges to the right hand sides.
00115 *
00116          CALL DLASWP( NRHS, B, LDB, 1, N, IPIV, 1 )
00117 *
00118 *        Solve L*X = B, overwriting B with X.
00119 *
00120          CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', N, NRHS,
00121      $               ONE, A, LDA, B, LDB )
00122 *
00123 *        Solve U*X = B, overwriting B with X.
00124 *
00125          CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
00126      $               NRHS, ONE, A, LDA, B, LDB )
00127       ELSE
00128 *
00129 *        Solve A**T * X = B.
00130 *
00131 *        Solve U**T *X = B, overwriting B with X.
00132 *
00133          CALL DTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit', N, NRHS,
00134      $               ONE, A, LDA, B, LDB )
00135 *
00136 *        Solve L**T *X = B, overwriting B with X.
00137 *
00138          CALL DTRSM( 'Left', 'Lower', 'Transpose', 'Unit', N, NRHS, ONE,
00139      $               A, LDA, B, LDB )
00140 *
00141 *        Apply row interchanges to the solution vectors.
00142 *
00143          CALL DLASWP( NRHS, B, LDB, 1, N, IPIV, -1 )
00144       END IF
00145 *
00146       RETURN
00147 *
00148 *     End of DGETRS
00149 *
00150       END
All Files Functions