LAPACK 3.3.1
Linear Algebra PACKage

clatps.f

Go to the documentation of this file.
00001       SUBROUTINE CLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
00002      $                   CNORM, INFO )
00003 *
00004 *  -- LAPACK auxiliary routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       CHARACTER          DIAG, NORMIN, TRANS, UPLO
00011       INTEGER            INFO, N
00012       REAL               SCALE
00013 *     ..
00014 *     .. Array Arguments ..
00015       REAL               CNORM( * )
00016       COMPLEX            AP( * ), X( * )
00017 *     ..
00018 *
00019 *  Purpose
00020 *  =======
00021 *
00022 *  CLATPS solves one of the triangular systems
00023 *
00024 *     A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b,
00025 *
00026 *  with scaling to prevent overflow, where A is an upper or lower
00027 *  triangular matrix stored in packed form.  Here A**T denotes the
00028 *  transpose of A, A**H denotes the conjugate transpose of A, x and b
00029 *  are n-element vectors, and s is a scaling factor, usually less than
00030 *  or equal to 1, chosen so that the components of x will be less than
00031 *  the overflow threshold.  If the unscaled problem will not cause
00032 *  overflow, the Level 2 BLAS routine CTPSV is called. If the matrix A
00033 *  is singular (A(j,j) = 0 for some j), then s is set to 0 and a
00034 *  non-trivial solution to A*x = 0 is returned.
00035 *
00036 *  Arguments
00037 *  =========
00038 *
00039 *  UPLO    (input) CHARACTER*1
00040 *          Specifies whether the matrix A is upper or lower triangular.
00041 *          = 'U':  Upper triangular
00042 *          = 'L':  Lower triangular
00043 *
00044 *  TRANS   (input) CHARACTER*1
00045 *          Specifies the operation applied to A.
00046 *          = 'N':  Solve A * x = s*b     (No transpose)
00047 *          = 'T':  Solve A**T * x = s*b  (Transpose)
00048 *          = 'C':  Solve A**H * x = s*b  (Conjugate transpose)
00049 *
00050 *  DIAG    (input) CHARACTER*1
00051 *          Specifies whether or not the matrix A is unit triangular.
00052 *          = 'N':  Non-unit triangular
00053 *          = 'U':  Unit triangular
00054 *
00055 *  NORMIN  (input) CHARACTER*1
00056 *          Specifies whether CNORM has been set or not.
00057 *          = 'Y':  CNORM contains the column norms on entry
00058 *          = 'N':  CNORM is not set on entry.  On exit, the norms will
00059 *                  be computed and stored in CNORM.
00060 *
00061 *  N       (input) INTEGER
00062 *          The order of the matrix A.  N >= 0.
00063 *
00064 *  AP      (input) COMPLEX array, dimension (N*(N+1)/2)
00065 *          The upper or lower triangular matrix A, packed columnwise in
00066 *          a linear array.  The j-th column of A is stored in the array
00067 *          AP as follows:
00068 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
00069 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
00070 *
00071 *  X       (input/output) COMPLEX array, dimension (N)
00072 *          On entry, the right hand side b of the triangular system.
00073 *          On exit, X is overwritten by the solution vector x.
00074 *
00075 *  SCALE   (output) REAL
00076 *          The scaling factor s for the triangular system
00077 *             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b.
00078 *          If SCALE = 0, the matrix A is singular or badly scaled, and
00079 *          the vector x is an exact or approximate solution to A*x = 0.
00080 *
00081 *  CNORM   (input or output) REAL array, dimension (N)
00082 *
00083 *          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
00084 *          contains the norm of the off-diagonal part of the j-th column
00085 *          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
00086 *          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
00087 *          must be greater than or equal to the 1-norm.
00088 *
00089 *          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
00090 *          returns the 1-norm of the offdiagonal part of the j-th column
00091 *          of A.
00092 *
00093 *  INFO    (output) INTEGER
00094 *          = 0:  successful exit
00095 *          < 0:  if INFO = -k, the k-th argument had an illegal value
00096 *
00097 *  Further Details
00098 *  ======= =======
00099 *
00100 *  A rough bound on x is computed; if that is less than overflow, CTPSV
00101 *  is called, otherwise, specific code is used which checks for possible
00102 *  overflow or divide-by-zero at every operation.
00103 *
00104 *  A columnwise scheme is used for solving A*x = b.  The basic algorithm
00105 *  if A is lower triangular is
00106 *
00107 *       x[1:n] := b[1:n]
00108 *       for j = 1, ..., n
00109 *            x(j) := x(j) / A(j,j)
00110 *            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
00111 *       end
00112 *
00113 *  Define bounds on the components of x after j iterations of the loop:
00114 *     M(j) = bound on x[1:j]
00115 *     G(j) = bound on x[j+1:n]
00116 *  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
00117 *
00118 *  Then for iteration j+1 we have
00119 *     M(j+1) <= G(j) / | A(j+1,j+1) |
00120 *     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
00121 *            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
00122 *
00123 *  where CNORM(j+1) is greater than or equal to the infinity-norm of
00124 *  column j+1 of A, not counting the diagonal.  Hence
00125 *
00126 *     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
00127 *                  1<=i<=j
00128 *  and
00129 *
00130 *     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
00131 *                                   1<=i< j
00132 *
00133 *  Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTPSV if the
00134 *  reciprocal of the largest M(j), j=1,..,n, is larger than
00135 *  max(underflow, 1/overflow).
00136 *
00137 *  The bound on x(j) is also used to determine when a step in the
00138 *  columnwise method can be performed without fear of overflow.  If
00139 *  the computed bound is greater than a large constant, x is scaled to
00140 *  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
00141 *  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
00142 *
00143 *  Similarly, a row-wise scheme is used to solve A**T *x = b  or
00144 *  A**H *x = b.  The basic algorithm for A upper triangular is
00145 *
00146 *       for j = 1, ..., n
00147 *            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
00148 *       end
00149 *
00150 *  We simultaneously compute two bounds
00151 *       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
00152 *       M(j) = bound on x(i), 1<=i<=j
00153 *
00154 *  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
00155 *  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
00156 *  Then the bound on x(j) is
00157 *
00158 *       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
00159 *
00160 *            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
00161 *                      1<=i<=j
00162 *
00163 *  and we can safely call CTPSV if 1/M(n) and 1/G(n) are both greater
00164 *  than max(underflow, 1/overflow).
00165 *
00166 *  =====================================================================
00167 *
00168 *     .. Parameters ..
00169       REAL               ZERO, HALF, ONE, TWO
00170       PARAMETER          ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0,
00171      $                   TWO = 2.0E+0 )
00172 *     ..
00173 *     .. Local Scalars ..
00174       LOGICAL            NOTRAN, NOUNIT, UPPER
00175       INTEGER            I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
00176       REAL               BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
00177      $                   XBND, XJ, XMAX
00178       COMPLEX            CSUMJ, TJJS, USCAL, ZDUM
00179 *     ..
00180 *     .. External Functions ..
00181       LOGICAL            LSAME
00182       INTEGER            ICAMAX, ISAMAX
00183       REAL               SCASUM, SLAMCH
00184       COMPLEX            CDOTC, CDOTU, CLADIV
00185       EXTERNAL           LSAME, ICAMAX, ISAMAX, SCASUM, SLAMCH, CDOTC,
00186      $                   CDOTU, CLADIV
00187 *     ..
00188 *     .. External Subroutines ..
00189       EXTERNAL           CAXPY, CSSCAL, CTPSV, SLABAD, SSCAL, XERBLA
00190 *     ..
00191 *     .. Intrinsic Functions ..
00192       INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL
00193 *     ..
00194 *     .. Statement Functions ..
00195       REAL               CABS1, CABS2
00196 *     ..
00197 *     .. Statement Function definitions ..
00198       CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
00199       CABS2( ZDUM ) = ABS( REAL( ZDUM ) / 2. ) +
00200      $                ABS( AIMAG( ZDUM ) / 2. )
00201 *     ..
00202 *     .. Executable Statements ..
00203 *
00204       INFO = 0
00205       UPPER = LSAME( UPLO, 'U' )
00206       NOTRAN = LSAME( TRANS, 'N' )
00207       NOUNIT = LSAME( DIAG, 'N' )
00208 *
00209 *     Test the input parameters.
00210 *
00211       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
00212          INFO = -1
00213       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
00214      $         LSAME( TRANS, 'C' ) ) THEN
00215          INFO = -2
00216       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
00217          INFO = -3
00218       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
00219      $         LSAME( NORMIN, 'N' ) ) THEN
00220          INFO = -4
00221       ELSE IF( N.LT.0 ) THEN
00222          INFO = -5
00223       END IF
00224       IF( INFO.NE.0 ) THEN
00225          CALL XERBLA( 'CLATPS', -INFO )
00226          RETURN
00227       END IF
00228 *
00229 *     Quick return if possible
00230 *
00231       IF( N.EQ.0 )
00232      $   RETURN
00233 *
00234 *     Determine machine dependent parameters to control overflow.
00235 *
00236       SMLNUM = SLAMCH( 'Safe minimum' )
00237       BIGNUM = ONE / SMLNUM
00238       CALL SLABAD( SMLNUM, BIGNUM )
00239       SMLNUM = SMLNUM / SLAMCH( 'Precision' )
00240       BIGNUM = ONE / SMLNUM
00241       SCALE = ONE
00242 *
00243       IF( LSAME( NORMIN, 'N' ) ) THEN
00244 *
00245 *        Compute the 1-norm of each column, not including the diagonal.
00246 *
00247          IF( UPPER ) THEN
00248 *
00249 *           A is upper triangular.
00250 *
00251             IP = 1
00252             DO 10 J = 1, N
00253                CNORM( J ) = SCASUM( J-1, AP( IP ), 1 )
00254                IP = IP + J
00255    10       CONTINUE
00256          ELSE
00257 *
00258 *           A is lower triangular.
00259 *
00260             IP = 1
00261             DO 20 J = 1, N - 1
00262                CNORM( J ) = SCASUM( N-J, AP( IP+1 ), 1 )
00263                IP = IP + N - J + 1
00264    20       CONTINUE
00265             CNORM( N ) = ZERO
00266          END IF
00267       END IF
00268 *
00269 *     Scale the column norms by TSCAL if the maximum element in CNORM is
00270 *     greater than BIGNUM/2.
00271 *
00272       IMAX = ISAMAX( N, CNORM, 1 )
00273       TMAX = CNORM( IMAX )
00274       IF( TMAX.LE.BIGNUM*HALF ) THEN
00275          TSCAL = ONE
00276       ELSE
00277          TSCAL = HALF / ( SMLNUM*TMAX )
00278          CALL SSCAL( N, TSCAL, CNORM, 1 )
00279       END IF
00280 *
00281 *     Compute a bound on the computed solution vector to see if the
00282 *     Level 2 BLAS routine CTPSV can be used.
00283 *
00284       XMAX = ZERO
00285       DO 30 J = 1, N
00286          XMAX = MAX( XMAX, CABS2( X( J ) ) )
00287    30 CONTINUE
00288       XBND = XMAX
00289       IF( NOTRAN ) THEN
00290 *
00291 *        Compute the growth in A * x = b.
00292 *
00293          IF( UPPER ) THEN
00294             JFIRST = N
00295             JLAST = 1
00296             JINC = -1
00297          ELSE
00298             JFIRST = 1
00299             JLAST = N
00300             JINC = 1
00301          END IF
00302 *
00303          IF( TSCAL.NE.ONE ) THEN
00304             GROW = ZERO
00305             GO TO 60
00306          END IF
00307 *
00308          IF( NOUNIT ) THEN
00309 *
00310 *           A is non-unit triangular.
00311 *
00312 *           Compute GROW = 1/G(j) and XBND = 1/M(j).
00313 *           Initially, G(0) = max{x(i), i=1,...,n}.
00314 *
00315             GROW = HALF / MAX( XBND, SMLNUM )
00316             XBND = GROW
00317             IP = JFIRST*( JFIRST+1 ) / 2
00318             JLEN = N
00319             DO 40 J = JFIRST, JLAST, JINC
00320 *
00321 *              Exit the loop if the growth factor is too small.
00322 *
00323                IF( GROW.LE.SMLNUM )
00324      $            GO TO 60
00325 *
00326                TJJS = AP( IP )
00327                TJJ = CABS1( TJJS )
00328 *
00329                IF( TJJ.GE.SMLNUM ) THEN
00330 *
00331 *                 M(j) = G(j-1) / abs(A(j,j))
00332 *
00333                   XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
00334                ELSE
00335 *
00336 *                 M(j) could overflow, set XBND to 0.
00337 *
00338                   XBND = ZERO
00339                END IF
00340 *
00341                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
00342 *
00343 *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
00344 *
00345                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
00346                ELSE
00347 *
00348 *                 G(j) could overflow, set GROW to 0.
00349 *
00350                   GROW = ZERO
00351                END IF
00352                IP = IP + JINC*JLEN
00353                JLEN = JLEN - 1
00354    40       CONTINUE
00355             GROW = XBND
00356          ELSE
00357 *
00358 *           A is unit triangular.
00359 *
00360 *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
00361 *
00362             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
00363             DO 50 J = JFIRST, JLAST, JINC
00364 *
00365 *              Exit the loop if the growth factor is too small.
00366 *
00367                IF( GROW.LE.SMLNUM )
00368      $            GO TO 60
00369 *
00370 *              G(j) = G(j-1)*( 1 + CNORM(j) )
00371 *
00372                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
00373    50       CONTINUE
00374          END IF
00375    60    CONTINUE
00376 *
00377       ELSE
00378 *
00379 *        Compute the growth in A**T * x = b  or  A**H * x = b.
00380 *
00381          IF( UPPER ) THEN
00382             JFIRST = 1
00383             JLAST = N
00384             JINC = 1
00385          ELSE
00386             JFIRST = N
00387             JLAST = 1
00388             JINC = -1
00389          END IF
00390 *
00391          IF( TSCAL.NE.ONE ) THEN
00392             GROW = ZERO
00393             GO TO 90
00394          END IF
00395 *
00396          IF( NOUNIT ) THEN
00397 *
00398 *           A is non-unit triangular.
00399 *
00400 *           Compute GROW = 1/G(j) and XBND = 1/M(j).
00401 *           Initially, M(0) = max{x(i), i=1,...,n}.
00402 *
00403             GROW = HALF / MAX( XBND, SMLNUM )
00404             XBND = GROW
00405             IP = JFIRST*( JFIRST+1 ) / 2
00406             JLEN = 1
00407             DO 70 J = JFIRST, JLAST, JINC
00408 *
00409 *              Exit the loop if the growth factor is too small.
00410 *
00411                IF( GROW.LE.SMLNUM )
00412      $            GO TO 90
00413 *
00414 *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
00415 *
00416                XJ = ONE + CNORM( J )
00417                GROW = MIN( GROW, XBND / XJ )
00418 *
00419                TJJS = AP( IP )
00420                TJJ = CABS1( TJJS )
00421 *
00422                IF( TJJ.GE.SMLNUM ) THEN
00423 *
00424 *                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
00425 *
00426                   IF( XJ.GT.TJJ )
00427      $               XBND = XBND*( TJJ / XJ )
00428                ELSE
00429 *
00430 *                 M(j) could overflow, set XBND to 0.
00431 *
00432                   XBND = ZERO
00433                END IF
00434                JLEN = JLEN + 1
00435                IP = IP + JINC*JLEN
00436    70       CONTINUE
00437             GROW = MIN( GROW, XBND )
00438          ELSE
00439 *
00440 *           A is unit triangular.
00441 *
00442 *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
00443 *
00444             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
00445             DO 80 J = JFIRST, JLAST, JINC
00446 *
00447 *              Exit the loop if the growth factor is too small.
00448 *
00449                IF( GROW.LE.SMLNUM )
00450      $            GO TO 90
00451 *
00452 *              G(j) = ( 1 + CNORM(j) )*G(j-1)
00453 *
00454                XJ = ONE + CNORM( J )
00455                GROW = GROW / XJ
00456    80       CONTINUE
00457          END IF
00458    90    CONTINUE
00459       END IF
00460 *
00461       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
00462 *
00463 *        Use the Level 2 BLAS solve if the reciprocal of the bound on
00464 *        elements of X is not too small.
00465 *
00466          CALL CTPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
00467       ELSE
00468 *
00469 *        Use a Level 1 BLAS solve, scaling intermediate results.
00470 *
00471          IF( XMAX.GT.BIGNUM*HALF ) THEN
00472 *
00473 *           Scale X so that its components are less than or equal to
00474 *           BIGNUM in absolute value.
00475 *
00476             SCALE = ( BIGNUM*HALF ) / XMAX
00477             CALL CSSCAL( N, SCALE, X, 1 )
00478             XMAX = BIGNUM
00479          ELSE
00480             XMAX = XMAX*TWO
00481          END IF
00482 *
00483          IF( NOTRAN ) THEN
00484 *
00485 *           Solve A * x = b
00486 *
00487             IP = JFIRST*( JFIRST+1 ) / 2
00488             DO 110 J = JFIRST, JLAST, JINC
00489 *
00490 *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
00491 *
00492                XJ = CABS1( X( J ) )
00493                IF( NOUNIT ) THEN
00494                   TJJS = AP( IP )*TSCAL
00495                ELSE
00496                   TJJS = TSCAL
00497                   IF( TSCAL.EQ.ONE )
00498      $               GO TO 105
00499                END IF
00500                   TJJ = CABS1( TJJS )
00501                   IF( TJJ.GT.SMLNUM ) THEN
00502 *
00503 *                    abs(A(j,j)) > SMLNUM:
00504 *
00505                      IF( TJJ.LT.ONE ) THEN
00506                         IF( XJ.GT.TJJ*BIGNUM ) THEN
00507 *
00508 *                          Scale x by 1/b(j).
00509 *
00510                            REC = ONE / XJ
00511                            CALL CSSCAL( N, REC, X, 1 )
00512                            SCALE = SCALE*REC
00513                            XMAX = XMAX*REC
00514                         END IF
00515                      END IF
00516                      X( J ) = CLADIV( X( J ), TJJS )
00517                      XJ = CABS1( X( J ) )
00518                   ELSE IF( TJJ.GT.ZERO ) THEN
00519 *
00520 *                    0 < abs(A(j,j)) <= SMLNUM:
00521 *
00522                      IF( XJ.GT.TJJ*BIGNUM ) THEN
00523 *
00524 *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
00525 *                       to avoid overflow when dividing by A(j,j).
00526 *
00527                         REC = ( TJJ*BIGNUM ) / XJ
00528                         IF( CNORM( J ).GT.ONE ) THEN
00529 *
00530 *                          Scale by 1/CNORM(j) to avoid overflow when
00531 *                          multiplying x(j) times column j.
00532 *
00533                            REC = REC / CNORM( J )
00534                         END IF
00535                         CALL CSSCAL( N, REC, X, 1 )
00536                         SCALE = SCALE*REC
00537                         XMAX = XMAX*REC
00538                      END IF
00539                      X( J ) = CLADIV( X( J ), TJJS )
00540                      XJ = CABS1( X( J ) )
00541                   ELSE
00542 *
00543 *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
00544 *                    scale = 0, and compute a solution to A*x = 0.
00545 *
00546                      DO 100 I = 1, N
00547                         X( I ) = ZERO
00548   100                CONTINUE
00549                      X( J ) = ONE
00550                      XJ = ONE
00551                      SCALE = ZERO
00552                      XMAX = ZERO
00553                   END IF
00554   105          CONTINUE
00555 *
00556 *              Scale x if necessary to avoid overflow when adding a
00557 *              multiple of column j of A.
00558 *
00559                IF( XJ.GT.ONE ) THEN
00560                   REC = ONE / XJ
00561                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
00562 *
00563 *                    Scale x by 1/(2*abs(x(j))).
00564 *
00565                      REC = REC*HALF
00566                      CALL CSSCAL( N, REC, X, 1 )
00567                      SCALE = SCALE*REC
00568                   END IF
00569                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
00570 *
00571 *                 Scale x by 1/2.
00572 *
00573                   CALL CSSCAL( N, HALF, X, 1 )
00574                   SCALE = SCALE*HALF
00575                END IF
00576 *
00577                IF( UPPER ) THEN
00578                   IF( J.GT.1 ) THEN
00579 *
00580 *                    Compute the update
00581 *                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
00582 *
00583                      CALL CAXPY( J-1, -X( J )*TSCAL, AP( IP-J+1 ), 1, X,
00584      $                           1 )
00585                      I = ICAMAX( J-1, X, 1 )
00586                      XMAX = CABS1( X( I ) )
00587                   END IF
00588                   IP = IP - J
00589                ELSE
00590                   IF( J.LT.N ) THEN
00591 *
00592 *                    Compute the update
00593 *                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
00594 *
00595                      CALL CAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
00596      $                           X( J+1 ), 1 )
00597                      I = J + ICAMAX( N-J, X( J+1 ), 1 )
00598                      XMAX = CABS1( X( I ) )
00599                   END IF
00600                   IP = IP + N - J + 1
00601                END IF
00602   110       CONTINUE
00603 *
00604          ELSE IF( LSAME( TRANS, 'T' ) ) THEN
00605 *
00606 *           Solve A**T * x = b
00607 *
00608             IP = JFIRST*( JFIRST+1 ) / 2
00609             JLEN = 1
00610             DO 150 J = JFIRST, JLAST, JINC
00611 *
00612 *              Compute x(j) = b(j) - sum A(k,j)*x(k).
00613 *                                    k<>j
00614 *
00615                XJ = CABS1( X( J ) )
00616                USCAL = TSCAL
00617                REC = ONE / MAX( XMAX, ONE )
00618                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
00619 *
00620 *                 If x(j) could overflow, scale x by 1/(2*XMAX).
00621 *
00622                   REC = REC*HALF
00623                   IF( NOUNIT ) THEN
00624                      TJJS = AP( IP )*TSCAL
00625                   ELSE
00626                      TJJS = TSCAL
00627                   END IF
00628                      TJJ = CABS1( TJJS )
00629                      IF( TJJ.GT.ONE ) THEN
00630 *
00631 *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
00632 *
00633                         REC = MIN( ONE, REC*TJJ )
00634                         USCAL = CLADIV( USCAL, TJJS )
00635                      END IF
00636                   IF( REC.LT.ONE ) THEN
00637                      CALL CSSCAL( N, REC, X, 1 )
00638                      SCALE = SCALE*REC
00639                      XMAX = XMAX*REC
00640                   END IF
00641                END IF
00642 *
00643                CSUMJ = ZERO
00644                IF( USCAL.EQ.CMPLX( ONE ) ) THEN
00645 *
00646 *                 If the scaling needed for A in the dot product is 1,
00647 *                 call CDOTU to perform the dot product.
00648 *
00649                   IF( UPPER ) THEN
00650                      CSUMJ = CDOTU( J-1, AP( IP-J+1 ), 1, X, 1 )
00651                   ELSE IF( J.LT.N ) THEN
00652                      CSUMJ = CDOTU( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
00653                   END IF
00654                ELSE
00655 *
00656 *                 Otherwise, use in-line code for the dot product.
00657 *
00658                   IF( UPPER ) THEN
00659                      DO 120 I = 1, J - 1
00660                         CSUMJ = CSUMJ + ( AP( IP-J+I )*USCAL )*X( I )
00661   120                CONTINUE
00662                   ELSE IF( J.LT.N ) THEN
00663                      DO 130 I = 1, N - J
00664                         CSUMJ = CSUMJ + ( AP( IP+I )*USCAL )*X( J+I )
00665   130                CONTINUE
00666                   END IF
00667                END IF
00668 *
00669                IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
00670 *
00671 *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
00672 *                 was not used to scale the dotproduct.
00673 *
00674                   X( J ) = X( J ) - CSUMJ
00675                   XJ = CABS1( X( J ) )
00676                   IF( NOUNIT ) THEN
00677 *
00678 *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
00679 *
00680                      TJJS = AP( IP )*TSCAL
00681                   ELSE
00682                      TJJS = TSCAL
00683                      IF( TSCAL.EQ.ONE )
00684      $                  GO TO 145
00685                   END IF
00686                      TJJ = CABS1( TJJS )
00687                      IF( TJJ.GT.SMLNUM ) THEN
00688 *
00689 *                       abs(A(j,j)) > SMLNUM:
00690 *
00691                         IF( TJJ.LT.ONE ) THEN
00692                            IF( XJ.GT.TJJ*BIGNUM ) THEN
00693 *
00694 *                             Scale X by 1/abs(x(j)).
00695 *
00696                               REC = ONE / XJ
00697                               CALL CSSCAL( N, REC, X, 1 )
00698                               SCALE = SCALE*REC
00699                               XMAX = XMAX*REC
00700                            END IF
00701                         END IF
00702                         X( J ) = CLADIV( X( J ), TJJS )
00703                      ELSE IF( TJJ.GT.ZERO ) THEN
00704 *
00705 *                       0 < abs(A(j,j)) <= SMLNUM:
00706 *
00707                         IF( XJ.GT.TJJ*BIGNUM ) THEN
00708 *
00709 *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
00710 *
00711                            REC = ( TJJ*BIGNUM ) / XJ
00712                            CALL CSSCAL( N, REC, X, 1 )
00713                            SCALE = SCALE*REC
00714                            XMAX = XMAX*REC
00715                         END IF
00716                         X( J ) = CLADIV( X( J ), TJJS )
00717                      ELSE
00718 *
00719 *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
00720 *                       scale = 0 and compute a solution to A**T *x = 0.
00721 *
00722                         DO 140 I = 1, N
00723                            X( I ) = ZERO
00724   140                   CONTINUE
00725                         X( J ) = ONE
00726                         SCALE = ZERO
00727                         XMAX = ZERO
00728                      END IF
00729   145             CONTINUE
00730                ELSE
00731 *
00732 *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
00733 *                 product has already been divided by 1/A(j,j).
00734 *
00735                   X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
00736                END IF
00737                XMAX = MAX( XMAX, CABS1( X( J ) ) )
00738                JLEN = JLEN + 1
00739                IP = IP + JINC*JLEN
00740   150       CONTINUE
00741 *
00742          ELSE
00743 *
00744 *           Solve A**H * x = b
00745 *
00746             IP = JFIRST*( JFIRST+1 ) / 2
00747             JLEN = 1
00748             DO 190 J = JFIRST, JLAST, JINC
00749 *
00750 *              Compute x(j) = b(j) - sum A(k,j)*x(k).
00751 *                                    k<>j
00752 *
00753                XJ = CABS1( X( J ) )
00754                USCAL = TSCAL
00755                REC = ONE / MAX( XMAX, ONE )
00756                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
00757 *
00758 *                 If x(j) could overflow, scale x by 1/(2*XMAX).
00759 *
00760                   REC = REC*HALF
00761                   IF( NOUNIT ) THEN
00762                      TJJS = CONJG( AP( IP ) )*TSCAL
00763                   ELSE
00764                      TJJS = TSCAL
00765                   END IF
00766                      TJJ = CABS1( TJJS )
00767                      IF( TJJ.GT.ONE ) THEN
00768 *
00769 *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
00770 *
00771                         REC = MIN( ONE, REC*TJJ )
00772                         USCAL = CLADIV( USCAL, TJJS )
00773                      END IF
00774                   IF( REC.LT.ONE ) THEN
00775                      CALL CSSCAL( N, REC, X, 1 )
00776                      SCALE = SCALE*REC
00777                      XMAX = XMAX*REC
00778                   END IF
00779                END IF
00780 *
00781                CSUMJ = ZERO
00782                IF( USCAL.EQ.CMPLX( ONE ) ) THEN
00783 *
00784 *                 If the scaling needed for A in the dot product is 1,
00785 *                 call CDOTC to perform the dot product.
00786 *
00787                   IF( UPPER ) THEN
00788                      CSUMJ = CDOTC( J-1, AP( IP-J+1 ), 1, X, 1 )
00789                   ELSE IF( J.LT.N ) THEN
00790                      CSUMJ = CDOTC( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
00791                   END IF
00792                ELSE
00793 *
00794 *                 Otherwise, use in-line code for the dot product.
00795 *
00796                   IF( UPPER ) THEN
00797                      DO 160 I = 1, J - 1
00798                         CSUMJ = CSUMJ + ( CONJG( AP( IP-J+I ) )*USCAL )*
00799      $                          X( I )
00800   160                CONTINUE
00801                   ELSE IF( J.LT.N ) THEN
00802                      DO 170 I = 1, N - J
00803                         CSUMJ = CSUMJ + ( CONJG( AP( IP+I ) )*USCAL )*
00804      $                          X( J+I )
00805   170                CONTINUE
00806                   END IF
00807                END IF
00808 *
00809                IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
00810 *
00811 *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
00812 *                 was not used to scale the dotproduct.
00813 *
00814                   X( J ) = X( J ) - CSUMJ
00815                   XJ = CABS1( X( J ) )
00816                   IF( NOUNIT ) THEN
00817 *
00818 *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
00819 *
00820                      TJJS = CONJG( AP( IP ) )*TSCAL
00821                   ELSE
00822                      TJJS = TSCAL
00823                      IF( TSCAL.EQ.ONE )
00824      $                  GO TO 185
00825                   END IF
00826                      TJJ = CABS1( TJJS )
00827                      IF( TJJ.GT.SMLNUM ) THEN
00828 *
00829 *                       abs(A(j,j)) > SMLNUM:
00830 *
00831                         IF( TJJ.LT.ONE ) THEN
00832                            IF( XJ.GT.TJJ*BIGNUM ) THEN
00833 *
00834 *                             Scale X by 1/abs(x(j)).
00835 *
00836                               REC = ONE / XJ
00837                               CALL CSSCAL( N, REC, X, 1 )
00838                               SCALE = SCALE*REC
00839                               XMAX = XMAX*REC
00840                            END IF
00841                         END IF
00842                         X( J ) = CLADIV( X( J ), TJJS )
00843                      ELSE IF( TJJ.GT.ZERO ) THEN
00844 *
00845 *                       0 < abs(A(j,j)) <= SMLNUM:
00846 *
00847                         IF( XJ.GT.TJJ*BIGNUM ) THEN
00848 *
00849 *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
00850 *
00851                            REC = ( TJJ*BIGNUM ) / XJ
00852                            CALL CSSCAL( N, REC, X, 1 )
00853                            SCALE = SCALE*REC
00854                            XMAX = XMAX*REC
00855                         END IF
00856                         X( J ) = CLADIV( X( J ), TJJS )
00857                      ELSE
00858 *
00859 *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
00860 *                       scale = 0 and compute a solution to A**H *x = 0.
00861 *
00862                         DO 180 I = 1, N
00863                            X( I ) = ZERO
00864   180                   CONTINUE
00865                         X( J ) = ONE
00866                         SCALE = ZERO
00867                         XMAX = ZERO
00868                      END IF
00869   185             CONTINUE
00870                ELSE
00871 *
00872 *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
00873 *                 product has already been divided by 1/A(j,j).
00874 *
00875                   X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
00876                END IF
00877                XMAX = MAX( XMAX, CABS1( X( J ) ) )
00878                JLEN = JLEN + 1
00879                IP = IP + JINC*JLEN
00880   190       CONTINUE
00881          END IF
00882          SCALE = SCALE / TSCAL
00883       END IF
00884 *
00885 *     Scale the column norms by 1/TSCAL for return.
00886 *
00887       IF( TSCAL.NE.ONE ) THEN
00888          CALL SSCAL( N, ONE / TSCAL, CNORM, 1 )
00889       END IF
00890 *
00891       RETURN
00892 *
00893 *     End of CLATPS
00894 *
00895       END
 All Files Functions