LAPACK 3.3.1
Linear Algebra PACKage

cla_porcond_c.f

Go to the documentation of this file.
00001       REAL FUNCTION CLA_PORCOND_C( UPLO, N, A, LDA, AF, LDAF, C, CAPPLY,
00002      $                             INFO, WORK, RWORK )
00003 *
00004 *     -- LAPACK routine (version 3.2.1)                                 --
00005 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
00006 *     -- Jason Riedy of Univ. of California Berkeley.                 --
00007 *     -- April 2009                                                   --
00008 *
00009 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
00010 *     -- Univ. of California Berkeley and NAG Ltd.                    --
00011 *
00012       IMPLICIT NONE
00013 *     ..
00014 *     .. Scalar Arguments ..
00015       CHARACTER          UPLO
00016       LOGICAL            CAPPLY
00017       INTEGER            N, LDA, LDAF, INFO
00018 *     ..
00019 *     .. Array Arguments ..
00020       COMPLEX            A( LDA, * ), AF( LDAF, * ), WORK( * )
00021       REAL               C( * ), RWORK( * )
00022 *     ..
00023 *
00024 *  Purpose
00025 *  =======
00026 *
00027 *     CLA_PORCOND_C Computes the infinity norm condition number of
00028 *     op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector
00029 *
00030 *  Arguments
00031 *  =========
00032 *
00033 *     UPLO    (input) CHARACTER*1
00034 *       = 'U':  Upper triangle of A is stored;
00035 *       = 'L':  Lower triangle of A is stored.
00036 *
00037 *     N       (input) INTEGER
00038 *     The number of linear equations, i.e., the order of the
00039 *     matrix A.  N >= 0.
00040 *
00041 *     A       (input) COMPLEX array, dimension (LDA,N)
00042 *     On entry, the N-by-N matrix A
00043 *
00044 *     LDA     (input) INTEGER
00045 *     The leading dimension of the array A.  LDA >= max(1,N).
00046 *
00047 *     AF      (input) COMPLEX array, dimension (LDAF,N)
00048 *     The triangular factor U or L from the Cholesky factorization
00049 *     A = U**T*U or A = L*L**T, as computed by CPOTRF.
00050 *
00051 *     LDAF    (input) INTEGER
00052 *     The leading dimension of the array AF.  LDAF >= max(1,N).
00053 *
00054 *     C       (input) REAL array, dimension (N)
00055 *     The vector C in the formula op(A) * inv(diag(C)).
00056 *
00057 *     CAPPLY  (input) LOGICAL
00058 *     If .TRUE. then access the vector C in the formula above.
00059 *
00060 *     INFO    (output) INTEGER
00061 *       = 0:  Successful exit.
00062 *     i > 0:  The ith argument is invalid.
00063 *
00064 *     WORK    (input) COMPLEX array, dimension (2*N).
00065 *     Workspace.
00066 *
00067 *     RWORK   (input) REAL array, dimension (N).
00068 *     Workspace.
00069 *
00070 *  =====================================================================
00071 *
00072 *     .. Local Scalars ..
00073       INTEGER            KASE
00074       REAL               AINVNM, ANORM, TMP
00075       INTEGER            I, J
00076       LOGICAL            UP
00077       COMPLEX            ZDUM
00078 *     ..
00079 *     .. Local Arrays ..
00080       INTEGER            ISAVE( 3 )
00081 *     ..
00082 *     .. External Functions ..
00083       LOGICAL            LSAME
00084       EXTERNAL           LSAME
00085 *     ..
00086 *     .. External Subroutines ..
00087       EXTERNAL           CLACN2, CPOTRS, XERBLA
00088 *     ..
00089 *     .. Intrinsic Functions ..
00090       INTRINSIC          ABS, MAX, REAL, AIMAG
00091 *     ..
00092 *     .. Statement Functions ..
00093       REAL CABS1
00094 *     ..
00095 *     .. Statement Function Definitions ..
00096       CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
00097 *     ..
00098 *     .. Executable Statements ..
00099 *
00100       CLA_PORCOND_C = 0.0E+0
00101 *
00102       INFO = 0
00103       IF( N.LT.0 ) THEN
00104          INFO = -2
00105       END IF
00106       IF( INFO.NE.0 ) THEN
00107          CALL XERBLA( 'CLA_PORCOND_C', -INFO )
00108          RETURN
00109       END IF
00110       UP = .FALSE.
00111       IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
00112 *
00113 *     Compute norm of op(A)*op2(C).
00114 *
00115       ANORM = 0.0E+0
00116       IF ( UP ) THEN
00117          DO I = 1, N
00118             TMP = 0.0E+0
00119             IF ( CAPPLY ) THEN
00120                DO J = 1, I
00121                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
00122                END DO
00123                DO J = I+1, N
00124                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
00125                END DO
00126             ELSE
00127                DO J = 1, I
00128                   TMP = TMP + CABS1( A( J, I ) )
00129                END DO
00130                DO J = I+1, N
00131                   TMP = TMP + CABS1( A( I, J ) )
00132                END DO
00133             END IF
00134             RWORK( I ) = TMP
00135             ANORM = MAX( ANORM, TMP )
00136          END DO
00137       ELSE
00138          DO I = 1, N
00139             TMP = 0.0E+0
00140             IF ( CAPPLY ) THEN
00141                DO J = 1, I
00142                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
00143                END DO
00144                DO J = I+1, N
00145                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
00146                END DO
00147             ELSE
00148                DO J = 1, I
00149                   TMP = TMP + CABS1( A( I, J ) )
00150                END DO
00151                DO J = I+1, N
00152                   TMP = TMP + CABS1( A( J, I ) )
00153                END DO
00154             END IF
00155             RWORK( I ) = TMP
00156             ANORM = MAX( ANORM, TMP )
00157          END DO
00158       END IF
00159 *
00160 *     Quick return if possible.
00161 *
00162       IF( N.EQ.0 ) THEN
00163          CLA_PORCOND_C = 1.0E+0
00164          RETURN
00165       ELSE IF( ANORM .EQ. 0.0E+0 ) THEN
00166          RETURN
00167       END IF
00168 *
00169 *     Estimate the norm of inv(op(A)).
00170 *
00171       AINVNM = 0.0E+0
00172 *
00173       KASE = 0
00174    10 CONTINUE
00175       CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
00176       IF( KASE.NE.0 ) THEN
00177          IF( KASE.EQ.2 ) THEN
00178 *
00179 *           Multiply by R.
00180 *
00181             DO I = 1, N
00182                WORK( I ) = WORK( I ) * RWORK( I )
00183             END DO
00184 *
00185             IF ( UP ) THEN
00186                CALL CPOTRS( 'U', N, 1, AF, LDAF,
00187      $            WORK, N, INFO )
00188             ELSE
00189                CALL CPOTRS( 'L', N, 1, AF, LDAF,
00190      $            WORK, N, INFO )
00191             ENDIF
00192 *
00193 *           Multiply by inv(C).
00194 *
00195             IF ( CAPPLY ) THEN
00196                DO I = 1, N
00197                   WORK( I ) = WORK( I ) * C( I )
00198                END DO
00199             END IF
00200          ELSE
00201 *
00202 *           Multiply by inv(C**H).
00203 *
00204             IF ( CAPPLY ) THEN
00205                DO I = 1, N
00206                   WORK( I ) = WORK( I ) * C( I )
00207                END DO
00208             END IF
00209 *
00210             IF ( UP ) THEN
00211                CALL CPOTRS( 'U', N, 1, AF, LDAF,
00212      $            WORK, N, INFO )
00213             ELSE
00214                CALL CPOTRS( 'L', N, 1, AF, LDAF,
00215      $            WORK, N, INFO )
00216             END IF
00217 *
00218 *           Multiply by R.
00219 *
00220             DO I = 1, N
00221                WORK( I ) = WORK( I ) * RWORK( I )
00222             END DO
00223          END IF
00224          GO TO 10
00225       END IF
00226 *
00227 *     Compute the estimate of the reciprocal condition number.
00228 *
00229       IF( AINVNM .NE. 0.0E+0 )
00230      $   CLA_PORCOND_C = 1.0E+0 / AINVNM
00231 *
00232       RETURN
00233 *
00234       END
 All Files Functions