LAPACK 3.3.1
Linear Algebra PACKage
|
00001 REAL FUNCTION CLANSB( NORM, UPLO, N, K, AB, LDAB, 00002 $ WORK ) 00003 * 00004 * -- LAPACK auxiliary routine (version 3.2) -- 00005 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00006 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00007 * November 2006 00008 * 00009 * .. Scalar Arguments .. 00010 CHARACTER NORM, UPLO 00011 INTEGER K, LDAB, N 00012 * .. 00013 * .. Array Arguments .. 00014 REAL WORK( * ) 00015 COMPLEX AB( LDAB, * ) 00016 * .. 00017 * 00018 * Purpose 00019 * ======= 00020 * 00021 * CLANSB returns the value of the one norm, or the Frobenius norm, or 00022 * the infinity norm, or the element of largest absolute value of an 00023 * n by n symmetric band matrix A, with k super-diagonals. 00024 * 00025 * Description 00026 * =========== 00027 * 00028 * CLANSB returns the value 00029 * 00030 * CLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm' 00031 * ( 00032 * ( norm1(A), NORM = '1', 'O' or 'o' 00033 * ( 00034 * ( normI(A), NORM = 'I' or 'i' 00035 * ( 00036 * ( normF(A), NORM = 'F', 'f', 'E' or 'e' 00037 * 00038 * where norm1 denotes the one norm of a matrix (maximum column sum), 00039 * normI denotes the infinity norm of a matrix (maximum row sum) and 00040 * normF denotes the Frobenius norm of a matrix (square root of sum of 00041 * squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. 00042 * 00043 * Arguments 00044 * ========= 00045 * 00046 * NORM (input) CHARACTER*1 00047 * Specifies the value to be returned in CLANSB as described 00048 * above. 00049 * 00050 * UPLO (input) CHARACTER*1 00051 * Specifies whether the upper or lower triangular part of the 00052 * band matrix A is supplied. 00053 * = 'U': Upper triangular part is supplied 00054 * = 'L': Lower triangular part is supplied 00055 * 00056 * N (input) INTEGER 00057 * The order of the matrix A. N >= 0. When N = 0, CLANSB is 00058 * set to zero. 00059 * 00060 * K (input) INTEGER 00061 * The number of super-diagonals or sub-diagonals of the 00062 * band matrix A. K >= 0. 00063 * 00064 * AB (input) COMPLEX array, dimension (LDAB,N) 00065 * The upper or lower triangle of the symmetric band matrix A, 00066 * stored in the first K+1 rows of AB. The j-th column of A is 00067 * stored in the j-th column of the array AB as follows: 00068 * if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; 00069 * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). 00070 * 00071 * LDAB (input) INTEGER 00072 * The leading dimension of the array AB. LDAB >= K+1. 00073 * 00074 * WORK (workspace) REAL array, dimension (MAX(1,LWORK)), 00075 * where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, 00076 * WORK is not referenced. 00077 * 00078 * ===================================================================== 00079 * 00080 * .. Parameters .. 00081 REAL ONE, ZERO 00082 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 00083 * .. 00084 * .. Local Scalars .. 00085 INTEGER I, J, L 00086 REAL ABSA, SCALE, SUM, VALUE 00087 * .. 00088 * .. External Functions .. 00089 LOGICAL LSAME 00090 EXTERNAL LSAME 00091 * .. 00092 * .. External Subroutines .. 00093 EXTERNAL CLASSQ 00094 * .. 00095 * .. Intrinsic Functions .. 00096 INTRINSIC ABS, MAX, MIN, SQRT 00097 * .. 00098 * .. Executable Statements .. 00099 * 00100 IF( N.EQ.0 ) THEN 00101 VALUE = ZERO 00102 ELSE IF( LSAME( NORM, 'M' ) ) THEN 00103 * 00104 * Find max(abs(A(i,j))). 00105 * 00106 VALUE = ZERO 00107 IF( LSAME( UPLO, 'U' ) ) THEN 00108 DO 20 J = 1, N 00109 DO 10 I = MAX( K+2-J, 1 ), K + 1 00110 VALUE = MAX( VALUE, ABS( AB( I, J ) ) ) 00111 10 CONTINUE 00112 20 CONTINUE 00113 ELSE 00114 DO 40 J = 1, N 00115 DO 30 I = 1, MIN( N+1-J, K+1 ) 00116 VALUE = MAX( VALUE, ABS( AB( I, J ) ) ) 00117 30 CONTINUE 00118 40 CONTINUE 00119 END IF 00120 ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR. 00121 $ ( NORM.EQ.'1' ) ) THEN 00122 * 00123 * Find normI(A) ( = norm1(A), since A is symmetric). 00124 * 00125 VALUE = ZERO 00126 IF( LSAME( UPLO, 'U' ) ) THEN 00127 DO 60 J = 1, N 00128 SUM = ZERO 00129 L = K + 1 - J 00130 DO 50 I = MAX( 1, J-K ), J - 1 00131 ABSA = ABS( AB( L+I, J ) ) 00132 SUM = SUM + ABSA 00133 WORK( I ) = WORK( I ) + ABSA 00134 50 CONTINUE 00135 WORK( J ) = SUM + ABS( AB( K+1, J ) ) 00136 60 CONTINUE 00137 DO 70 I = 1, N 00138 VALUE = MAX( VALUE, WORK( I ) ) 00139 70 CONTINUE 00140 ELSE 00141 DO 80 I = 1, N 00142 WORK( I ) = ZERO 00143 80 CONTINUE 00144 DO 100 J = 1, N 00145 SUM = WORK( J ) + ABS( AB( 1, J ) ) 00146 L = 1 - J 00147 DO 90 I = J + 1, MIN( N, J+K ) 00148 ABSA = ABS( AB( L+I, J ) ) 00149 SUM = SUM + ABSA 00150 WORK( I ) = WORK( I ) + ABSA 00151 90 CONTINUE 00152 VALUE = MAX( VALUE, SUM ) 00153 100 CONTINUE 00154 END IF 00155 ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN 00156 * 00157 * Find normF(A). 00158 * 00159 SCALE = ZERO 00160 SUM = ONE 00161 IF( K.GT.0 ) THEN 00162 IF( LSAME( UPLO, 'U' ) ) THEN 00163 DO 110 J = 2, N 00164 CALL CLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ), 00165 $ 1, SCALE, SUM ) 00166 110 CONTINUE 00167 L = K + 1 00168 ELSE 00169 DO 120 J = 1, N - 1 00170 CALL CLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE, 00171 $ SUM ) 00172 120 CONTINUE 00173 L = 1 00174 END IF 00175 SUM = 2*SUM 00176 ELSE 00177 L = 1 00178 END IF 00179 CALL CLASSQ( N, AB( L, 1 ), LDAB, SCALE, SUM ) 00180 VALUE = SCALE*SQRT( SUM ) 00181 END IF 00182 * 00183 CLANSB = VALUE 00184 RETURN 00185 * 00186 * End of CLANSB 00187 * 00188 END