LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE DTRTRI( UPLO, DIAG, N, A, LDA, INFO ) 00002 * 00003 * -- LAPACK routine (version 3.2) -- 00004 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00005 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 CHARACTER DIAG, UPLO 00010 INTEGER INFO, LDA, N 00011 * .. 00012 * .. Array Arguments .. 00013 DOUBLE PRECISION A( LDA, * ) 00014 * .. 00015 * 00016 * Purpose 00017 * ======= 00018 * 00019 * DTRTRI computes the inverse of a real upper or lower triangular 00020 * matrix A. 00021 * 00022 * This is the Level 3 BLAS version of the algorithm. 00023 * 00024 * Arguments 00025 * ========= 00026 * 00027 * UPLO (input) CHARACTER*1 00028 * = 'U': A is upper triangular; 00029 * = 'L': A is lower triangular. 00030 * 00031 * DIAG (input) CHARACTER*1 00032 * = 'N': A is non-unit triangular; 00033 * = 'U': A is unit triangular. 00034 * 00035 * N (input) INTEGER 00036 * The order of the matrix A. N >= 0. 00037 * 00038 * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) 00039 * On entry, the triangular matrix A. If UPLO = 'U', the 00040 * leading N-by-N upper triangular part of the array A contains 00041 * the upper triangular matrix, and the strictly lower 00042 * triangular part of A is not referenced. If UPLO = 'L', the 00043 * leading N-by-N lower triangular part of the array A contains 00044 * the lower triangular matrix, and the strictly upper 00045 * triangular part of A is not referenced. If DIAG = 'U', the 00046 * diagonal elements of A are also not referenced and are 00047 * assumed to be 1. 00048 * On exit, the (triangular) inverse of the original matrix, in 00049 * the same storage format. 00050 * 00051 * LDA (input) INTEGER 00052 * The leading dimension of the array A. LDA >= max(1,N). 00053 * 00054 * INFO (output) INTEGER 00055 * = 0: successful exit 00056 * < 0: if INFO = -i, the i-th argument had an illegal value 00057 * > 0: if INFO = i, A(i,i) is exactly zero. The triangular 00058 * matrix is singular and its inverse can not be computed. 00059 * 00060 * ===================================================================== 00061 * 00062 * .. Parameters .. 00063 DOUBLE PRECISION ONE, ZERO 00064 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 00065 * .. 00066 * .. Local Scalars .. 00067 LOGICAL NOUNIT, UPPER 00068 INTEGER J, JB, NB, NN 00069 * .. 00070 * .. External Functions .. 00071 LOGICAL LSAME 00072 INTEGER ILAENV 00073 EXTERNAL LSAME, ILAENV 00074 * .. 00075 * .. External Subroutines .. 00076 EXTERNAL DTRMM, DTRSM, DTRTI2, XERBLA 00077 * .. 00078 * .. Intrinsic Functions .. 00079 INTRINSIC MAX, MIN 00080 * .. 00081 * .. Executable Statements .. 00082 * 00083 * Test the input parameters. 00084 * 00085 INFO = 0 00086 UPPER = LSAME( UPLO, 'U' ) 00087 NOUNIT = LSAME( DIAG, 'N' ) 00088 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 00089 INFO = -1 00090 ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN 00091 INFO = -2 00092 ELSE IF( N.LT.0 ) THEN 00093 INFO = -3 00094 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 00095 INFO = -5 00096 END IF 00097 IF( INFO.NE.0 ) THEN 00098 CALL XERBLA( 'DTRTRI', -INFO ) 00099 RETURN 00100 END IF 00101 * 00102 * Quick return if possible 00103 * 00104 IF( N.EQ.0 ) 00105 $ RETURN 00106 * 00107 * Check for singularity if non-unit. 00108 * 00109 IF( NOUNIT ) THEN 00110 DO 10 INFO = 1, N 00111 IF( A( INFO, INFO ).EQ.ZERO ) 00112 $ RETURN 00113 10 CONTINUE 00114 INFO = 0 00115 END IF 00116 * 00117 * Determine the block size for this environment. 00118 * 00119 NB = ILAENV( 1, 'DTRTRI', UPLO // DIAG, N, -1, -1, -1 ) 00120 IF( NB.LE.1 .OR. NB.GE.N ) THEN 00121 * 00122 * Use unblocked code 00123 * 00124 CALL DTRTI2( UPLO, DIAG, N, A, LDA, INFO ) 00125 ELSE 00126 * 00127 * Use blocked code 00128 * 00129 IF( UPPER ) THEN 00130 * 00131 * Compute inverse of upper triangular matrix 00132 * 00133 DO 20 J = 1, N, NB 00134 JB = MIN( NB, N-J+1 ) 00135 * 00136 * Compute rows 1:j-1 of current block column 00137 * 00138 CALL DTRMM( 'Left', 'Upper', 'No transpose', DIAG, J-1, 00139 $ JB, ONE, A, LDA, A( 1, J ), LDA ) 00140 CALL DTRSM( 'Right', 'Upper', 'No transpose', DIAG, J-1, 00141 $ JB, -ONE, A( J, J ), LDA, A( 1, J ), LDA ) 00142 * 00143 * Compute inverse of current diagonal block 00144 * 00145 CALL DTRTI2( 'Upper', DIAG, JB, A( J, J ), LDA, INFO ) 00146 20 CONTINUE 00147 ELSE 00148 * 00149 * Compute inverse of lower triangular matrix 00150 * 00151 NN = ( ( N-1 ) / NB )*NB + 1 00152 DO 30 J = NN, 1, -NB 00153 JB = MIN( NB, N-J+1 ) 00154 IF( J+JB.LE.N ) THEN 00155 * 00156 * Compute rows j+jb:n of current block column 00157 * 00158 CALL DTRMM( 'Left', 'Lower', 'No transpose', DIAG, 00159 $ N-J-JB+1, JB, ONE, A( J+JB, J+JB ), LDA, 00160 $ A( J+JB, J ), LDA ) 00161 CALL DTRSM( 'Right', 'Lower', 'No transpose', DIAG, 00162 $ N-J-JB+1, JB, -ONE, A( J, J ), LDA, 00163 $ A( J+JB, J ), LDA ) 00164 END IF 00165 * 00166 * Compute inverse of current diagonal block 00167 * 00168 CALL DTRTI2( 'Lower', DIAG, JB, A( J, J ), LDA, INFO ) 00169 30 CONTINUE 00170 END IF 00171 END IF 00172 * 00173 RETURN 00174 * 00175 * End of DTRTRI 00176 * 00177 END