LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE SSBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK, 00002 $ RESULT ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 CHARACTER UPLO 00010 INTEGER KA, KS, LDA, LDU, N 00011 * .. 00012 * .. Array Arguments .. 00013 REAL A( LDA, * ), D( * ), E( * ), RESULT( 2 ), 00014 $ U( LDU, * ), WORK( * ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * SSBT21 generally checks a decomposition of the form 00021 * 00022 * A = U S U' 00023 * 00024 * where ' means transpose, A is symmetric banded, U is 00025 * orthogonal, and S is diagonal (if KS=0) or symmetric 00026 * tridiagonal (if KS=1). 00027 * 00028 * Specifically: 00029 * 00030 * RESULT(1) = | A - U S U' | / ( |A| n ulp ) *and* 00031 * RESULT(2) = | I - UU' | / ( n ulp ) 00032 * 00033 * Arguments 00034 * ========= 00035 * 00036 * UPLO (input) CHARACTER 00037 * If UPLO='U', the upper triangle of A and V will be used and 00038 * the (strictly) lower triangle will not be referenced. 00039 * If UPLO='L', the lower triangle of A and V will be used and 00040 * the (strictly) upper triangle will not be referenced. 00041 * 00042 * N (input) INTEGER 00043 * The size of the matrix. If it is zero, SSBT21 does nothing. 00044 * It must be at least zero. 00045 * 00046 * KA (input) INTEGER 00047 * The bandwidth of the matrix A. It must be at least zero. If 00048 * it is larger than N-1, then max( 0, N-1 ) will be used. 00049 * 00050 * KS (input) INTEGER 00051 * The bandwidth of the matrix S. It may only be zero or one. 00052 * If zero, then S is diagonal, and E is not referenced. If 00053 * one, then S is symmetric tri-diagonal. 00054 * 00055 * A (input) REAL array, dimension (LDA, N) 00056 * The original (unfactored) matrix. It is assumed to be 00057 * symmetric, and only the upper (UPLO='U') or only the lower 00058 * (UPLO='L') will be referenced. 00059 * 00060 * LDA (input) INTEGER 00061 * The leading dimension of A. It must be at least 1 00062 * and at least min( KA, N-1 ). 00063 * 00064 * D (input) REAL array, dimension (N) 00065 * The diagonal of the (symmetric tri-) diagonal matrix S. 00066 * 00067 * E (input) REAL array, dimension (N-1) 00068 * The off-diagonal of the (symmetric tri-) diagonal matrix S. 00069 * E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and 00070 * (3,2) element, etc. 00071 * Not referenced if KS=0. 00072 * 00073 * U (input) REAL array, dimension (LDU, N) 00074 * The orthogonal matrix in the decomposition, expressed as a 00075 * dense matrix (i.e., not as a product of Householder 00076 * transformations, Givens transformations, etc.) 00077 * 00078 * LDU (input) INTEGER 00079 * The leading dimension of U. LDU must be at least N and 00080 * at least 1. 00081 * 00082 * WORK (workspace) REAL array, dimension (N**2+N) 00083 * 00084 * RESULT (output) REAL array, dimension (2) 00085 * The values computed by the two tests described above. The 00086 * values are currently limited to 1/ulp, to avoid overflow. 00087 * 00088 * ===================================================================== 00089 * 00090 * .. Parameters .. 00091 REAL ZERO, ONE 00092 PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) 00093 * .. 00094 * .. Local Scalars .. 00095 LOGICAL LOWER 00096 CHARACTER CUPLO 00097 INTEGER IKA, J, JC, JR, LW 00098 REAL ANORM, ULP, UNFL, WNORM 00099 * .. 00100 * .. External Functions .. 00101 LOGICAL LSAME 00102 REAL SLAMCH, SLANGE, SLANSB, SLANSP 00103 EXTERNAL LSAME, SLAMCH, SLANGE, SLANSB, SLANSP 00104 * .. 00105 * .. External Subroutines .. 00106 EXTERNAL SGEMM, SSPR, SSPR2 00107 * .. 00108 * .. Intrinsic Functions .. 00109 INTRINSIC MAX, MIN, REAL 00110 * .. 00111 * .. Executable Statements .. 00112 * 00113 * Constants 00114 * 00115 RESULT( 1 ) = ZERO 00116 RESULT( 2 ) = ZERO 00117 IF( N.LE.0 ) 00118 $ RETURN 00119 * 00120 IKA = MAX( 0, MIN( N-1, KA ) ) 00121 LW = ( N*( N+1 ) ) / 2 00122 * 00123 IF( LSAME( UPLO, 'U' ) ) THEN 00124 LOWER = .FALSE. 00125 CUPLO = 'U' 00126 ELSE 00127 LOWER = .TRUE. 00128 CUPLO = 'L' 00129 END IF 00130 * 00131 UNFL = SLAMCH( 'Safe minimum' ) 00132 ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) 00133 * 00134 * Some Error Checks 00135 * 00136 * Do Test 1 00137 * 00138 * Norm of A: 00139 * 00140 ANORM = MAX( SLANSB( '1', CUPLO, N, IKA, A, LDA, WORK ), UNFL ) 00141 * 00142 * Compute error matrix: Error = A - U S U' 00143 * 00144 * Copy A from SB to SP storage format. 00145 * 00146 J = 0 00147 DO 50 JC = 1, N 00148 IF( LOWER ) THEN 00149 DO 10 JR = 1, MIN( IKA+1, N+1-JC ) 00150 J = J + 1 00151 WORK( J ) = A( JR, JC ) 00152 10 CONTINUE 00153 DO 20 JR = IKA + 2, N + 1 - JC 00154 J = J + 1 00155 WORK( J ) = ZERO 00156 20 CONTINUE 00157 ELSE 00158 DO 30 JR = IKA + 2, JC 00159 J = J + 1 00160 WORK( J ) = ZERO 00161 30 CONTINUE 00162 DO 40 JR = MIN( IKA, JC-1 ), 0, -1 00163 J = J + 1 00164 WORK( J ) = A( IKA+1-JR, JC ) 00165 40 CONTINUE 00166 END IF 00167 50 CONTINUE 00168 * 00169 DO 60 J = 1, N 00170 CALL SSPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK ) 00171 60 CONTINUE 00172 * 00173 IF( N.GT.1 .AND. KS.EQ.1 ) THEN 00174 DO 70 J = 1, N - 1 00175 CALL SSPR2( CUPLO, N, -E( J ), U( 1, J ), 1, U( 1, J+1 ), 1, 00176 $ WORK ) 00177 70 CONTINUE 00178 END IF 00179 WNORM = SLANSP( '1', CUPLO, N, WORK, WORK( LW+1 ) ) 00180 * 00181 IF( ANORM.GT.WNORM ) THEN 00182 RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP ) 00183 ELSE 00184 IF( ANORM.LT.ONE ) THEN 00185 RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP ) 00186 ELSE 00187 RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP ) 00188 END IF 00189 END IF 00190 * 00191 * Do Test 2 00192 * 00193 * Compute UU' - I 00194 * 00195 CALL SGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK, 00196 $ N ) 00197 * 00198 DO 80 J = 1, N 00199 WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE 00200 80 CONTINUE 00201 * 00202 RESULT( 2 ) = MIN( SLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) ), 00203 $ REAL( N ) ) / ( N*ULP ) 00204 * 00205 RETURN 00206 * 00207 * End of SSBT21 00208 * 00209 END