LAPACK 3.3.1
Linear Algebra PACKage
|
00001 DOUBLE PRECISION FUNCTION ZLA_GERCOND_X( TRANS, N, A, LDA, AF, 00002 $ LDAF, IPIV, X, INFO, 00003 $ WORK, RWORK ) 00004 * 00005 * -- LAPACK routine (version 3.2.1) -- 00006 * -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- 00007 * -- Jason Riedy of Univ. of California Berkeley. -- 00008 * -- April 2009 -- 00009 * 00010 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00011 * -- Univ. of California Berkeley and NAG Ltd. -- 00012 * 00013 IMPLICIT NONE 00014 * .. 00015 * .. Scalar Arguments .. 00016 CHARACTER TRANS 00017 INTEGER N, LDA, LDAF, INFO 00018 * .. 00019 * .. Array Arguments .. 00020 INTEGER IPIV( * ) 00021 COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * ) 00022 DOUBLE PRECISION RWORK( * ) 00023 * .. 00024 * 00025 * Purpose 00026 * ======= 00027 * 00028 * ZLA_GERCOND_X computes the infinity norm condition number of 00029 * op(A) * diag(X) where X is a COMPLEX*16 vector. 00030 * 00031 * Arguments 00032 * ========= 00033 * 00034 * TRANS (input) CHARACTER*1 00035 * Specifies the form of the system of equations: 00036 * = 'N': A * X = B (No transpose) 00037 * = 'T': A**T * X = B (Transpose) 00038 * = 'C': A**H * X = B (Conjugate Transpose = Transpose) 00039 * 00040 * N (input) INTEGER 00041 * The number of linear equations, i.e., the order of the 00042 * matrix A. N >= 0. 00043 * 00044 * A (input) COMPLEX*16 array, dimension (LDA,N) 00045 * On entry, the N-by-N matrix A. 00046 * 00047 * LDA (input) INTEGER 00048 * The leading dimension of the array A. LDA >= max(1,N). 00049 * 00050 * AF (input) COMPLEX*16 array, dimension (LDAF,N) 00051 * The factors L and U from the factorization 00052 * A = P*L*U as computed by ZGETRF. 00053 * 00054 * LDAF (input) INTEGER 00055 * The leading dimension of the array AF. LDAF >= max(1,N). 00056 * 00057 * IPIV (input) INTEGER array, dimension (N) 00058 * The pivot indices from the factorization A = P*L*U 00059 * as computed by ZGETRF; row i of the matrix was interchanged 00060 * with row IPIV(i). 00061 * 00062 * X (input) COMPLEX*16 array, dimension (N) 00063 * The vector X in the formula op(A) * diag(X). 00064 * 00065 * INFO (output) INTEGER 00066 * = 0: Successful exit. 00067 * i > 0: The ith argument is invalid. 00068 * 00069 * WORK (input) COMPLEX*16 array, dimension (2*N). 00070 * Workspace. 00071 * 00072 * RWORK (input) DOUBLE PRECISION array, dimension (N). 00073 * Workspace. 00074 * 00075 * ===================================================================== 00076 * 00077 * .. Local Scalars .. 00078 LOGICAL NOTRANS 00079 INTEGER KASE 00080 DOUBLE PRECISION AINVNM, ANORM, TMP 00081 INTEGER I, J 00082 COMPLEX*16 ZDUM 00083 * .. 00084 * .. Local Arrays .. 00085 INTEGER ISAVE( 3 ) 00086 * .. 00087 * .. External Functions .. 00088 LOGICAL LSAME 00089 EXTERNAL LSAME 00090 * .. 00091 * .. External Subroutines .. 00092 EXTERNAL ZLACN2, ZGETRS, XERBLA 00093 * .. 00094 * .. Intrinsic Functions .. 00095 INTRINSIC ABS, MAX, REAL, DIMAG 00096 * .. 00097 * .. Statement Functions .. 00098 DOUBLE PRECISION CABS1 00099 * .. 00100 * .. Statement Function Definitions .. 00101 CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) ) 00102 * .. 00103 * .. Executable Statements .. 00104 * 00105 ZLA_GERCOND_X = 0.0D+0 00106 * 00107 INFO = 0 00108 NOTRANS = LSAME( TRANS, 'N' ) 00109 IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT. 00110 $ LSAME( TRANS, 'C' ) ) THEN 00111 INFO = -1 00112 ELSE IF( N.LT.0 ) THEN 00113 INFO = -2 00114 END IF 00115 IF( INFO.NE.0 ) THEN 00116 CALL XERBLA( 'ZLA_GERCOND_X', -INFO ) 00117 RETURN 00118 END IF 00119 * 00120 * Compute norm of op(A)*op2(C). 00121 * 00122 ANORM = 0.0D+0 00123 IF ( NOTRANS ) THEN 00124 DO I = 1, N 00125 TMP = 0.0D+0 00126 DO J = 1, N 00127 TMP = TMP + CABS1( A( I, J ) * X( J ) ) 00128 END DO 00129 RWORK( I ) = TMP 00130 ANORM = MAX( ANORM, TMP ) 00131 END DO 00132 ELSE 00133 DO I = 1, N 00134 TMP = 0.0D+0 00135 DO J = 1, N 00136 TMP = TMP + CABS1( A( J, I ) * X( J ) ) 00137 END DO 00138 RWORK( I ) = TMP 00139 ANORM = MAX( ANORM, TMP ) 00140 END DO 00141 END IF 00142 * 00143 * Quick return if possible. 00144 * 00145 IF( N.EQ.0 ) THEN 00146 ZLA_GERCOND_X = 1.0D+0 00147 RETURN 00148 ELSE IF( ANORM .EQ. 0.0D+0 ) THEN 00149 RETURN 00150 END IF 00151 * 00152 * Estimate the norm of inv(op(A)). 00153 * 00154 AINVNM = 0.0D+0 00155 * 00156 KASE = 0 00157 10 CONTINUE 00158 CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE ) 00159 IF( KASE.NE.0 ) THEN 00160 IF( KASE.EQ.2 ) THEN 00161 * Multiply by R. 00162 DO I = 1, N 00163 WORK( I ) = WORK( I ) * RWORK( I ) 00164 END DO 00165 * 00166 IF ( NOTRANS ) THEN 00167 CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV, 00168 $ WORK, N, INFO ) 00169 ELSE 00170 CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV, 00171 $ WORK, N, INFO ) 00172 ENDIF 00173 * 00174 * Multiply by inv(X). 00175 * 00176 DO I = 1, N 00177 WORK( I ) = WORK( I ) / X( I ) 00178 END DO 00179 ELSE 00180 * 00181 * Multiply by inv(X**H). 00182 * 00183 DO I = 1, N 00184 WORK( I ) = WORK( I ) / X( I ) 00185 END DO 00186 * 00187 IF ( NOTRANS ) THEN 00188 CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV, 00189 $ WORK, N, INFO ) 00190 ELSE 00191 CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV, 00192 $ WORK, N, INFO ) 00193 END IF 00194 * 00195 * Multiply by R. 00196 * 00197 DO I = 1, N 00198 WORK( I ) = WORK( I ) * RWORK( I ) 00199 END DO 00200 END IF 00201 GO TO 10 00202 END IF 00203 * 00204 * Compute the estimate of the reciprocal condition number. 00205 * 00206 IF( AINVNM .NE. 0.0D+0 ) 00207 $ ZLA_GERCOND_X = 1.0D+0 / AINVNM 00208 * 00209 RETURN 00210 * 00211 END