LAPACK 3.3.1
Linear Algebra PACKage
|
00001 REAL FUNCTION CQRT14( TRANS, M, N, NRHS, A, LDA, X, 00002 $ LDX, WORK, LWORK ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 CHARACTER TRANS 00010 INTEGER LDA, LDX, LWORK, M, N, NRHS 00011 * .. 00012 * .. Array Arguments .. 00013 COMPLEX A( LDA, * ), WORK( LWORK ), X( LDX, * ) 00014 * .. 00015 * 00016 * Purpose 00017 * ======= 00018 * 00019 * CQRT14 checks whether X is in the row space of A or A'. It does so 00020 * by scaling both X and A such that their norms are in the range 00021 * [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X] 00022 * (if TRANS = 'C') or an LQ factorization of [A',X]' (if TRANS = 'N'), 00023 * and returning the norm of the trailing triangle, scaled by 00024 * MAX(M,N,NRHS)*eps. 00025 * 00026 * Arguments 00027 * ========= 00028 * 00029 * TRANS (input) CHARACTER*1 00030 * = 'N': No transpose, check for X in the row space of A 00031 * = 'C': Conjugate transpose, check for X in row space of A'. 00032 * 00033 * M (input) INTEGER 00034 * The number of rows of the matrix A. 00035 * 00036 * N (input) INTEGER 00037 * The number of columns of the matrix A. 00038 * 00039 * NRHS (input) INTEGER 00040 * The number of right hand sides, i.e., the number of columns 00041 * of X. 00042 * 00043 * A (input) COMPLEX array, dimension (LDA,N) 00044 * The M-by-N matrix A. 00045 * 00046 * LDA (input) INTEGER 00047 * The leading dimension of the array A. 00048 * 00049 * X (input) COMPLEX array, dimension (LDX,NRHS) 00050 * If TRANS = 'N', the N-by-NRHS matrix X. 00051 * IF TRANS = 'C', the M-by-NRHS matrix X. 00052 * 00053 * LDX (input) INTEGER 00054 * The leading dimension of the array X. 00055 * 00056 * WORK (workspace) COMPLEX array dimension (LWORK) 00057 * 00058 * LWORK (input) INTEGER 00059 * length of workspace array required 00060 * If TRANS = 'N', LWORK >= (M+NRHS)*(N+2); 00061 * if TRANS = 'C', LWORK >= (N+NRHS)*(M+2). 00062 * 00063 * ===================================================================== 00064 * 00065 * .. Parameters .. 00066 REAL ZERO, ONE 00067 PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) 00068 * .. 00069 * .. Local Scalars .. 00070 LOGICAL TPSD 00071 INTEGER I, INFO, J, LDWORK 00072 REAL ANRM, ERR, XNRM 00073 * .. 00074 * .. Local Arrays .. 00075 REAL RWORK( 1 ) 00076 * .. 00077 * .. External Functions .. 00078 LOGICAL LSAME 00079 REAL CLANGE, SLAMCH 00080 EXTERNAL LSAME, CLANGE, SLAMCH 00081 * .. 00082 * .. External Subroutines .. 00083 EXTERNAL CGELQ2, CGEQR2, CLACPY, CLASCL, XERBLA 00084 * .. 00085 * .. Intrinsic Functions .. 00086 INTRINSIC ABS, CONJG, MAX, MIN, REAL 00087 * .. 00088 * .. Executable Statements .. 00089 * 00090 CQRT14 = ZERO 00091 IF( LSAME( TRANS, 'N' ) ) THEN 00092 LDWORK = M + NRHS 00093 TPSD = .FALSE. 00094 IF( LWORK.LT.( M+NRHS )*( N+2 ) ) THEN 00095 CALL XERBLA( 'CQRT14', 10 ) 00096 RETURN 00097 ELSE IF( N.LE.0 .OR. NRHS.LE.0 ) THEN 00098 RETURN 00099 END IF 00100 ELSE IF( LSAME( TRANS, 'C' ) ) THEN 00101 LDWORK = M 00102 TPSD = .TRUE. 00103 IF( LWORK.LT.( N+NRHS )*( M+2 ) ) THEN 00104 CALL XERBLA( 'CQRT14', 10 ) 00105 RETURN 00106 ELSE IF( M.LE.0 .OR. NRHS.LE.0 ) THEN 00107 RETURN 00108 END IF 00109 ELSE 00110 CALL XERBLA( 'CQRT14', 1 ) 00111 RETURN 00112 END IF 00113 * 00114 * Copy and scale A 00115 * 00116 CALL CLACPY( 'All', M, N, A, LDA, WORK, LDWORK ) 00117 ANRM = CLANGE( 'M', M, N, WORK, LDWORK, RWORK ) 00118 IF( ANRM.NE.ZERO ) 00119 $ CALL CLASCL( 'G', 0, 0, ANRM, ONE, M, N, WORK, LDWORK, INFO ) 00120 * 00121 * Copy X or X' into the right place and scale it 00122 * 00123 IF( TPSD ) THEN 00124 * 00125 * Copy X into columns n+1:n+nrhs of work 00126 * 00127 CALL CLACPY( 'All', M, NRHS, X, LDX, WORK( N*LDWORK+1 ), 00128 $ LDWORK ) 00129 XNRM = CLANGE( 'M', M, NRHS, WORK( N*LDWORK+1 ), LDWORK, 00130 $ RWORK ) 00131 IF( XNRM.NE.ZERO ) 00132 $ CALL CLASCL( 'G', 0, 0, XNRM, ONE, M, NRHS, 00133 $ WORK( N*LDWORK+1 ), LDWORK, INFO ) 00134 ANRM = CLANGE( 'One-norm', M, N+NRHS, WORK, LDWORK, RWORK ) 00135 * 00136 * Compute QR factorization of X 00137 * 00138 CALL CGEQR2( M, N+NRHS, WORK, LDWORK, 00139 $ WORK( LDWORK*( N+NRHS )+1 ), 00140 $ WORK( LDWORK*( N+NRHS )+MIN( M, N+NRHS )+1 ), 00141 $ INFO ) 00142 * 00143 * Compute largest entry in upper triangle of 00144 * work(n+1:m,n+1:n+nrhs) 00145 * 00146 ERR = ZERO 00147 DO 20 J = N + 1, N + NRHS 00148 DO 10 I = N + 1, MIN( M, J ) 00149 ERR = MAX( ERR, ABS( WORK( I+( J-1 )*M ) ) ) 00150 10 CONTINUE 00151 20 CONTINUE 00152 * 00153 ELSE 00154 * 00155 * Copy X' into rows m+1:m+nrhs of work 00156 * 00157 DO 40 I = 1, N 00158 DO 30 J = 1, NRHS 00159 WORK( M+J+( I-1 )*LDWORK ) = CONJG( X( I, J ) ) 00160 30 CONTINUE 00161 40 CONTINUE 00162 * 00163 XNRM = CLANGE( 'M', NRHS, N, WORK( M+1 ), LDWORK, RWORK ) 00164 IF( XNRM.NE.ZERO ) 00165 $ CALL CLASCL( 'G', 0, 0, XNRM, ONE, NRHS, N, WORK( M+1 ), 00166 $ LDWORK, INFO ) 00167 * 00168 * Compute LQ factorization of work 00169 * 00170 CALL CGELQ2( LDWORK, N, WORK, LDWORK, WORK( LDWORK*N+1 ), 00171 $ WORK( LDWORK*( N+1 )+1 ), INFO ) 00172 * 00173 * Compute largest entry in lower triangle in 00174 * work(m+1:m+nrhs,m+1:n) 00175 * 00176 ERR = ZERO 00177 DO 60 J = M + 1, N 00178 DO 50 I = J, LDWORK 00179 ERR = MAX( ERR, ABS( WORK( I+( J-1 )*LDWORK ) ) ) 00180 50 CONTINUE 00181 60 CONTINUE 00182 * 00183 END IF 00184 * 00185 CQRT14 = ERR / ( REAL( MAX( M, N, NRHS ) )*SLAMCH( 'Epsilon' ) ) 00186 * 00187 RETURN 00188 * 00189 * End of CQRT14 00190 * 00191 END