LAPACK 3.3.1
Linear Algebra PACKage

ssytf2.f

Go to the documentation of this file.
00001       SUBROUTINE SSYTF2( UPLO, N, A, LDA, IPIV, INFO )
00002 *
00003 *  -- LAPACK routine (version 3.3.1) --
00004 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00005 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00006 *  -- April 2011                                                      --
00007 *
00008 *     .. Scalar Arguments ..
00009       CHARACTER          UPLO
00010       INTEGER            INFO, LDA, N
00011 *     ..
00012 *     .. Array Arguments ..
00013       INTEGER            IPIV( * )
00014       REAL               A( LDA, * )
00015 *     ..
00016 *
00017 *  Purpose
00018 *  =======
00019 *
00020 *  SSYTF2 computes the factorization of a real symmetric matrix A using
00021 *  the Bunch-Kaufman diagonal pivoting method:
00022 *
00023 *     A = U*D*U**T  or  A = L*D*L**T
00024 *
00025 *  where U (or L) is a product of permutation and unit upper (lower)
00026 *  triangular matrices, U**T is the transpose of U, and D is symmetric and
00027 *  block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
00028 *
00029 *  This is the unblocked version of the algorithm, calling Level 2 BLAS.
00030 *
00031 *  Arguments
00032 *  =========
00033 *
00034 *  UPLO    (input) CHARACTER*1
00035 *          Specifies whether the upper or lower triangular part of the
00036 *          symmetric matrix A is stored:
00037 *          = 'U':  Upper triangular
00038 *          = 'L':  Lower triangular
00039 *
00040 *  N       (input) INTEGER
00041 *          The order of the matrix A.  N >= 0.
00042 *
00043 *  A       (input/output) REAL array, dimension (LDA,N)
00044 *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
00045 *          n-by-n upper triangular part of A contains the upper
00046 *          triangular part of the matrix A, and the strictly lower
00047 *          triangular part of A is not referenced.  If UPLO = 'L', the
00048 *          leading n-by-n lower triangular part of A contains the lower
00049 *          triangular part of the matrix A, and the strictly upper
00050 *          triangular part of A is not referenced.
00051 *
00052 *          On exit, the block diagonal matrix D and the multipliers used
00053 *          to obtain the factor U or L (see below for further details).
00054 *
00055 *  LDA     (input) INTEGER
00056 *          The leading dimension of the array A.  LDA >= max(1,N).
00057 *
00058 *  IPIV    (output) INTEGER array, dimension (N)
00059 *          Details of the interchanges and the block structure of D.
00060 *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
00061 *          interchanged and D(k,k) is a 1-by-1 diagonal block.
00062 *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
00063 *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
00064 *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
00065 *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
00066 *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
00067 *
00068 *  INFO    (output) INTEGER
00069 *          = 0: successful exit
00070 *          < 0: if INFO = -k, the k-th argument had an illegal value
00071 *          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
00072 *               has been completed, but the block diagonal matrix D is
00073 *               exactly singular, and division by zero will occur if it
00074 *               is used to solve a system of equations.
00075 *
00076 *  Further Details
00077 *  ===============
00078 *
00079 *  09-29-06 - patch from
00080 *    Bobby Cheng, MathWorks
00081 *
00082 *    Replace l.204 and l.372
00083 *         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
00084 *    by
00085 *         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. SISNAN(ABSAKK) ) THEN
00086 *
00087 *  01-01-96 - Based on modifications by
00088 *    J. Lewis, Boeing Computer Services Company
00089 *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
00090 *  1-96 - Based on modifications by J. Lewis, Boeing Computer Services
00091 *         Company
00092 *
00093 *  If UPLO = 'U', then A = U*D*U**T, where
00094 *     U = P(n)*U(n)* ... *P(k)U(k)* ...,
00095 *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
00096 *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
00097 *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
00098 *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
00099 *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
00100 *
00101 *             (   I    v    0   )   k-s
00102 *     U(k) =  (   0    I    0   )   s
00103 *             (   0    0    I   )   n-k
00104 *                k-s   s   n-k
00105 *
00106 *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
00107 *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
00108 *  and A(k,k), and v overwrites A(1:k-2,k-1:k).
00109 *
00110 *  If UPLO = 'L', then A = L*D*L**T, where
00111 *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
00112 *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
00113 *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
00114 *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
00115 *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
00116 *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
00117 *
00118 *             (   I    0     0   )  k-1
00119 *     L(k) =  (   0    I     0   )  s
00120 *             (   0    v     I   )  n-k-s+1
00121 *                k-1   s  n-k-s+1
00122 *
00123 *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
00124 *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
00125 *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
00126 *
00127 *  =====================================================================
00128 *
00129 *     .. Parameters ..
00130       REAL               ZERO, ONE
00131       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
00132       REAL               EIGHT, SEVTEN
00133       PARAMETER          ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
00134 *     ..
00135 *     .. Local Scalars ..
00136       LOGICAL            UPPER
00137       INTEGER            I, IMAX, J, JMAX, K, KK, KP, KSTEP
00138       REAL               ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
00139      $                   ROWMAX, T, WK, WKM1, WKP1
00140 *     ..
00141 *     .. External Functions ..
00142       LOGICAL            LSAME, SISNAN
00143       INTEGER            ISAMAX
00144       EXTERNAL           LSAME, ISAMAX, SISNAN
00145 *     ..
00146 *     .. External Subroutines ..
00147       EXTERNAL           SSCAL, SSWAP, SSYR, XERBLA
00148 *     ..
00149 *     .. Intrinsic Functions ..
00150       INTRINSIC          ABS, MAX, SQRT
00151 *     ..
00152 *     .. Executable Statements ..
00153 *
00154 *     Test the input parameters.
00155 *
00156       INFO = 0
00157       UPPER = LSAME( UPLO, 'U' )
00158       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
00159          INFO = -1
00160       ELSE IF( N.LT.0 ) THEN
00161          INFO = -2
00162       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
00163          INFO = -4
00164       END IF
00165       IF( INFO.NE.0 ) THEN
00166          CALL XERBLA( 'SSYTF2', -INFO )
00167          RETURN
00168       END IF
00169 *
00170 *     Initialize ALPHA for use in choosing pivot block size.
00171 *
00172       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
00173 *
00174       IF( UPPER ) THEN
00175 *
00176 *        Factorize A as U*D*U**T using the upper triangle of A
00177 *
00178 *        K is the main loop index, decreasing from N to 1 in steps of
00179 *        1 or 2
00180 *
00181          K = N
00182    10    CONTINUE
00183 *
00184 *        If K < 1, exit from loop
00185 *
00186          IF( K.LT.1 )
00187      $      GO TO 70
00188          KSTEP = 1
00189 *
00190 *        Determine rows and columns to be interchanged and whether
00191 *        a 1-by-1 or 2-by-2 pivot block will be used
00192 *
00193          ABSAKK = ABS( A( K, K ) )
00194 *
00195 *        IMAX is the row-index of the largest off-diagonal element in
00196 *        column K, and COLMAX is its absolute value
00197 *
00198          IF( K.GT.1 ) THEN
00199             IMAX = ISAMAX( K-1, A( 1, K ), 1 )
00200             COLMAX = ABS( A( IMAX, K ) )
00201          ELSE
00202             COLMAX = ZERO
00203          END IF
00204 *
00205          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. SISNAN(ABSAKK) ) THEN
00206 *
00207 *           Column K is zero or contains a NaN: set INFO and continue
00208 *
00209             IF( INFO.EQ.0 )
00210      $         INFO = K
00211             KP = K
00212          ELSE
00213             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
00214 *
00215 *              no interchange, use 1-by-1 pivot block
00216 *
00217                KP = K
00218             ELSE
00219 *
00220 *              JMAX is the column-index of the largest off-diagonal
00221 *              element in row IMAX, and ROWMAX is its absolute value
00222 *
00223                JMAX = IMAX + ISAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
00224                ROWMAX = ABS( A( IMAX, JMAX ) )
00225                IF( IMAX.GT.1 ) THEN
00226                   JMAX = ISAMAX( IMAX-1, A( 1, IMAX ), 1 )
00227                   ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
00228                END IF
00229 *
00230                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
00231 *
00232 *                 no interchange, use 1-by-1 pivot block
00233 *
00234                   KP = K
00235                ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
00236 *
00237 *                 interchange rows and columns K and IMAX, use 1-by-1
00238 *                 pivot block
00239 *
00240                   KP = IMAX
00241                ELSE
00242 *
00243 *                 interchange rows and columns K-1 and IMAX, use 2-by-2
00244 *                 pivot block
00245 *
00246                   KP = IMAX
00247                   KSTEP = 2
00248                END IF
00249             END IF
00250 *
00251             KK = K - KSTEP + 1
00252             IF( KP.NE.KK ) THEN
00253 *
00254 *              Interchange rows and columns KK and KP in the leading
00255 *              submatrix A(1:k,1:k)
00256 *
00257                CALL SSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
00258                CALL SSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
00259      $                     LDA )
00260                T = A( KK, KK )
00261                A( KK, KK ) = A( KP, KP )
00262                A( KP, KP ) = T
00263                IF( KSTEP.EQ.2 ) THEN
00264                   T = A( K-1, K )
00265                   A( K-1, K ) = A( KP, K )
00266                   A( KP, K ) = T
00267                END IF
00268             END IF
00269 *
00270 *           Update the leading submatrix
00271 *
00272             IF( KSTEP.EQ.1 ) THEN
00273 *
00274 *              1-by-1 pivot block D(k): column k now holds
00275 *
00276 *              W(k) = U(k)*D(k)
00277 *
00278 *              where U(k) is the k-th column of U
00279 *
00280 *              Perform a rank-1 update of A(1:k-1,1:k-1) as
00281 *
00282 *              A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
00283 *
00284                R1 = ONE / A( K, K )
00285                CALL SSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
00286 *
00287 *              Store U(k) in column k
00288 *
00289                CALL SSCAL( K-1, R1, A( 1, K ), 1 )
00290             ELSE
00291 *
00292 *              2-by-2 pivot block D(k): columns k and k-1 now hold
00293 *
00294 *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
00295 *
00296 *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
00297 *              of U
00298 *
00299 *              Perform a rank-2 update of A(1:k-2,1:k-2) as
00300 *
00301 *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
00302 *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
00303 *
00304                IF( K.GT.2 ) THEN
00305 *
00306                   D12 = A( K-1, K )
00307                   D22 = A( K-1, K-1 ) / D12
00308                   D11 = A( K, K ) / D12
00309                   T = ONE / ( D11*D22-ONE )
00310                   D12 = T / D12
00311 *
00312                   DO 30 J = K - 2, 1, -1
00313                      WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
00314                      WK = D12*( D22*A( J, K )-A( J, K-1 ) )
00315                      DO 20 I = J, 1, -1
00316                         A( I, J ) = A( I, J ) - A( I, K )*WK -
00317      $                              A( I, K-1 )*WKM1
00318    20                CONTINUE
00319                      A( J, K ) = WK
00320                      A( J, K-1 ) = WKM1
00321    30             CONTINUE
00322 *
00323                END IF
00324 *
00325             END IF
00326          END IF
00327 *
00328 *        Store details of the interchanges in IPIV
00329 *
00330          IF( KSTEP.EQ.1 ) THEN
00331             IPIV( K ) = KP
00332          ELSE
00333             IPIV( K ) = -KP
00334             IPIV( K-1 ) = -KP
00335          END IF
00336 *
00337 *        Decrease K and return to the start of the main loop
00338 *
00339          K = K - KSTEP
00340          GO TO 10
00341 *
00342       ELSE
00343 *
00344 *        Factorize A as L*D*L**T using the lower triangle of A
00345 *
00346 *        K is the main loop index, increasing from 1 to N in steps of
00347 *        1 or 2
00348 *
00349          K = 1
00350    40    CONTINUE
00351 *
00352 *        If K > N, exit from loop
00353 *
00354          IF( K.GT.N )
00355      $      GO TO 70
00356          KSTEP = 1
00357 *
00358 *        Determine rows and columns to be interchanged and whether
00359 *        a 1-by-1 or 2-by-2 pivot block will be used
00360 *
00361          ABSAKK = ABS( A( K, K ) )
00362 *
00363 *        IMAX is the row-index of the largest off-diagonal element in
00364 *        column K, and COLMAX is its absolute value
00365 *
00366          IF( K.LT.N ) THEN
00367             IMAX = K + ISAMAX( N-K, A( K+1, K ), 1 )
00368             COLMAX = ABS( A( IMAX, K ) )
00369          ELSE
00370             COLMAX = ZERO
00371          END IF
00372 *
00373          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. SISNAN(ABSAKK) ) THEN
00374 *
00375 *           Column K is zero or contains a NaN: set INFO and continue
00376 *
00377             IF( INFO.EQ.0 )
00378      $         INFO = K
00379             KP = K
00380          ELSE
00381             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
00382 *
00383 *              no interchange, use 1-by-1 pivot block
00384 *
00385                KP = K
00386             ELSE
00387 *
00388 *              JMAX is the column-index of the largest off-diagonal
00389 *              element in row IMAX, and ROWMAX is its absolute value
00390 *
00391                JMAX = K - 1 + ISAMAX( IMAX-K, A( IMAX, K ), LDA )
00392                ROWMAX = ABS( A( IMAX, JMAX ) )
00393                IF( IMAX.LT.N ) THEN
00394                   JMAX = IMAX + ISAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
00395                   ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
00396                END IF
00397 *
00398                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
00399 *
00400 *                 no interchange, use 1-by-1 pivot block
00401 *
00402                   KP = K
00403                ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
00404 *
00405 *                 interchange rows and columns K and IMAX, use 1-by-1
00406 *                 pivot block
00407 *
00408                   KP = IMAX
00409                ELSE
00410 *
00411 *                 interchange rows and columns K+1 and IMAX, use 2-by-2
00412 *                 pivot block
00413 *
00414                   KP = IMAX
00415                   KSTEP = 2
00416                END IF
00417             END IF
00418 *
00419             KK = K + KSTEP - 1
00420             IF( KP.NE.KK ) THEN
00421 *
00422 *              Interchange rows and columns KK and KP in the trailing
00423 *              submatrix A(k:n,k:n)
00424 *
00425                IF( KP.LT.N )
00426      $            CALL SSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
00427                CALL SSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
00428      $                     LDA )
00429                T = A( KK, KK )
00430                A( KK, KK ) = A( KP, KP )
00431                A( KP, KP ) = T
00432                IF( KSTEP.EQ.2 ) THEN
00433                   T = A( K+1, K )
00434                   A( K+1, K ) = A( KP, K )
00435                   A( KP, K ) = T
00436                END IF
00437             END IF
00438 *
00439 *           Update the trailing submatrix
00440 *
00441             IF( KSTEP.EQ.1 ) THEN
00442 *
00443 *              1-by-1 pivot block D(k): column k now holds
00444 *
00445 *              W(k) = L(k)*D(k)
00446 *
00447 *              where L(k) is the k-th column of L
00448 *
00449                IF( K.LT.N ) THEN
00450 *
00451 *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
00452 *
00453 *                 A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
00454 *
00455                   D11 = ONE / A( K, K )
00456                   CALL SSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
00457      $                       A( K+1, K+1 ), LDA )
00458 *
00459 *                 Store L(k) in column K
00460 *
00461                   CALL SSCAL( N-K, D11, A( K+1, K ), 1 )
00462                END IF
00463             ELSE
00464 *
00465 *              2-by-2 pivot block D(k)
00466 *
00467                IF( K.LT.N-1 ) THEN
00468 *
00469 *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
00470 *
00471 *                 A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))**T
00472 *
00473 *                 where L(k) and L(k+1) are the k-th and (k+1)-th
00474 *                 columns of L
00475 *
00476                   D21 = A( K+1, K )
00477                   D11 = A( K+1, K+1 ) / D21
00478                   D22 = A( K, K ) / D21
00479                   T = ONE / ( D11*D22-ONE )
00480                   D21 = T / D21
00481 *
00482                   DO 60 J = K + 2, N
00483 *
00484                      WK = D21*( D11*A( J, K )-A( J, K+1 ) )
00485                      WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
00486 *
00487                      DO 50 I = J, N
00488                         A( I, J ) = A( I, J ) - A( I, K )*WK -
00489      $                              A( I, K+1 )*WKP1
00490    50                CONTINUE
00491 *
00492                      A( J, K ) = WK
00493                      A( J, K+1 ) = WKP1
00494 *
00495    60             CONTINUE
00496                END IF
00497             END IF
00498          END IF
00499 *
00500 *        Store details of the interchanges in IPIV
00501 *
00502          IF( KSTEP.EQ.1 ) THEN
00503             IPIV( K ) = KP
00504          ELSE
00505             IPIV( K ) = -KP
00506             IPIV( K+1 ) = -KP
00507          END IF
00508 *
00509 *        Increase K and return to the start of the main loop
00510 *
00511          K = K + KSTEP
00512          GO TO 40
00513 *
00514       END IF
00515 *
00516    70 CONTINUE
00517 *
00518       RETURN
00519 *
00520 *     End of SSYTF2
00521 *
00522       END
 All Files Functions