LAPACK 3.3.1
Linear Algebra PACKage

clabrd.f

Go to the documentation of this file.
00001       SUBROUTINE CLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
00002      $                   LDY )
00003 *
00004 *  -- LAPACK auxiliary routine (version 3.3.1) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *  -- April 2011                                                      --
00008 *
00009 *     .. Scalar Arguments ..
00010       INTEGER            LDA, LDX, LDY, M, N, NB
00011 *     ..
00012 *     .. Array Arguments ..
00013       REAL               D( * ), E( * )
00014       COMPLEX            A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
00015      $                   Y( LDY, * )
00016 *     ..
00017 *
00018 *  Purpose
00019 *  =======
00020 *
00021 *  CLABRD reduces the first NB rows and columns of a complex general
00022 *  m by n matrix A to upper or lower real bidiagonal form by a unitary
00023 *  transformation Q**H * A * P, and returns the matrices X and Y which
00024 *  are needed to apply the transformation to the unreduced part of A.
00025 *
00026 *  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
00027 *  bidiagonal form.
00028 *
00029 *  This is an auxiliary routine called by CGEBRD
00030 *
00031 *  Arguments
00032 *  =========
00033 *
00034 *  M       (input) INTEGER
00035 *          The number of rows in the matrix A.
00036 *
00037 *  N       (input) INTEGER
00038 *          The number of columns in the matrix A.
00039 *
00040 *  NB      (input) INTEGER
00041 *          The number of leading rows and columns of A to be reduced.
00042 *
00043 *  A       (input/output) COMPLEX array, dimension (LDA,N)
00044 *          On entry, the m by n general matrix to be reduced.
00045 *          On exit, the first NB rows and columns of the matrix are
00046 *          overwritten; the rest of the array is unchanged.
00047 *          If m >= n, elements on and below the diagonal in the first NB
00048 *            columns, with the array TAUQ, represent the unitary
00049 *            matrix Q as a product of elementary reflectors; and
00050 *            elements above the diagonal in the first NB rows, with the
00051 *            array TAUP, represent the unitary matrix P as a product
00052 *            of elementary reflectors.
00053 *          If m < n, elements below the diagonal in the first NB
00054 *            columns, with the array TAUQ, represent the unitary
00055 *            matrix Q as a product of elementary reflectors, and
00056 *            elements on and above the diagonal in the first NB rows,
00057 *            with the array TAUP, represent the unitary matrix P as
00058 *            a product of elementary reflectors.
00059 *          See Further Details.
00060 *
00061 *  LDA     (input) INTEGER
00062 *          The leading dimension of the array A.  LDA >= max(1,M).
00063 *
00064 *  D       (output) REAL array, dimension (NB)
00065 *          The diagonal elements of the first NB rows and columns of
00066 *          the reduced matrix.  D(i) = A(i,i).
00067 *
00068 *  E       (output) REAL array, dimension (NB)
00069 *          The off-diagonal elements of the first NB rows and columns of
00070 *          the reduced matrix.
00071 *
00072 *  TAUQ    (output) COMPLEX array dimension (NB)
00073 *          The scalar factors of the elementary reflectors which
00074 *          represent the unitary matrix Q. See Further Details.
00075 *
00076 *  TAUP    (output) COMPLEX array, dimension (NB)
00077 *          The scalar factors of the elementary reflectors which
00078 *          represent the unitary matrix P. See Further Details.
00079 *
00080 *  X       (output) COMPLEX array, dimension (LDX,NB)
00081 *          The m-by-nb matrix X required to update the unreduced part
00082 *          of A.
00083 *
00084 *  LDX     (input) INTEGER
00085 *          The leading dimension of the array X. LDX >= max(1,M).
00086 *
00087 *  Y       (output) COMPLEX array, dimension (LDY,NB)
00088 *          The n-by-nb matrix Y required to update the unreduced part
00089 *          of A.
00090 *
00091 *  LDY     (input) INTEGER
00092 *          The leading dimension of the array Y. LDY >= max(1,N).
00093 *
00094 *  Further Details
00095 *  ===============
00096 *
00097 *  The matrices Q and P are represented as products of elementary
00098 *  reflectors:
00099 *
00100 *     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
00101 *
00102 *  Each H(i) and G(i) has the form:
00103 *
00104 *     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
00105 *
00106 *  where tauq and taup are complex scalars, and v and u are complex
00107 *  vectors.
00108 *
00109 *  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
00110 *  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
00111 *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
00112 *
00113 *  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
00114 *  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
00115 *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
00116 *
00117 *  The elements of the vectors v and u together form the m-by-nb matrix
00118 *  V and the nb-by-n matrix U**H which are needed, with X and Y, to apply
00119 *  the transformation to the unreduced part of the matrix, using a block
00120 *  update of the form:  A := A - V*Y**H - X*U**H.
00121 *
00122 *  The contents of A on exit are illustrated by the following examples
00123 *  with nb = 2:
00124 *
00125 *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
00126 *
00127 *    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
00128 *    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
00129 *    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
00130 *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
00131 *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
00132 *    (  v1  v2  a   a   a  )
00133 *
00134 *  where a denotes an element of the original matrix which is unchanged,
00135 *  vi denotes an element of the vector defining H(i), and ui an element
00136 *  of the vector defining G(i).
00137 *
00138 *  =====================================================================
00139 *
00140 *     .. Parameters ..
00141       COMPLEX            ZERO, ONE
00142       PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ),
00143      $                   ONE = ( 1.0E+0, 0.0E+0 ) )
00144 *     ..
00145 *     .. Local Scalars ..
00146       INTEGER            I
00147       COMPLEX            ALPHA
00148 *     ..
00149 *     .. External Subroutines ..
00150       EXTERNAL           CGEMV, CLACGV, CLARFG, CSCAL
00151 *     ..
00152 *     .. Intrinsic Functions ..
00153       INTRINSIC          MIN
00154 *     ..
00155 *     .. Executable Statements ..
00156 *
00157 *     Quick return if possible
00158 *
00159       IF( M.LE.0 .OR. N.LE.0 )
00160      $   RETURN
00161 *
00162       IF( M.GE.N ) THEN
00163 *
00164 *        Reduce to upper bidiagonal form
00165 *
00166          DO 10 I = 1, NB
00167 *
00168 *           Update A(i:m,i)
00169 *
00170             CALL CLACGV( I-1, Y( I, 1 ), LDY )
00171             CALL CGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
00172      $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
00173             CALL CLACGV( I-1, Y( I, 1 ), LDY )
00174             CALL CGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
00175      $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
00176 *
00177 *           Generate reflection Q(i) to annihilate A(i+1:m,i)
00178 *
00179             ALPHA = A( I, I )
00180             CALL CLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
00181      $                   TAUQ( I ) )
00182             D( I ) = ALPHA
00183             IF( I.LT.N ) THEN
00184                A( I, I ) = ONE
00185 *
00186 *              Compute Y(i+1:n,i)
00187 *
00188                CALL CGEMV( 'Conjugate transpose', M-I+1, N-I, ONE,
00189      $                     A( I, I+1 ), LDA, A( I, I ), 1, ZERO,
00190      $                     Y( I+1, I ), 1 )
00191                CALL CGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
00192      $                     A( I, 1 ), LDA, A( I, I ), 1, ZERO,
00193      $                     Y( 1, I ), 1 )
00194                CALL CGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
00195      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
00196                CALL CGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
00197      $                     X( I, 1 ), LDX, A( I, I ), 1, ZERO,
00198      $                     Y( 1, I ), 1 )
00199                CALL CGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
00200      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
00201      $                     Y( I+1, I ), 1 )
00202                CALL CSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
00203 *
00204 *              Update A(i,i+1:n)
00205 *
00206                CALL CLACGV( N-I, A( I, I+1 ), LDA )
00207                CALL CLACGV( I, A( I, 1 ), LDA )
00208                CALL CGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
00209      $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
00210                CALL CLACGV( I, A( I, 1 ), LDA )
00211                CALL CLACGV( I-1, X( I, 1 ), LDX )
00212                CALL CGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
00213      $                     A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE,
00214      $                     A( I, I+1 ), LDA )
00215                CALL CLACGV( I-1, X( I, 1 ), LDX )
00216 *
00217 *              Generate reflection P(i) to annihilate A(i,i+2:n)
00218 *
00219                ALPHA = A( I, I+1 )
00220                CALL CLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ),
00221      $                      LDA, TAUP( I ) )
00222                E( I ) = ALPHA
00223                A( I, I+1 ) = ONE
00224 *
00225 *              Compute X(i+1:m,i)
00226 *
00227                CALL CGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
00228      $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
00229                CALL CGEMV( 'Conjugate transpose', N-I, I, ONE,
00230      $                     Y( I+1, 1 ), LDY, A( I, I+1 ), LDA, ZERO,
00231      $                     X( 1, I ), 1 )
00232                CALL CGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
00233      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
00234                CALL CGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
00235      $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
00236                CALL CGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
00237      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
00238                CALL CSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
00239                CALL CLACGV( N-I, A( I, I+1 ), LDA )
00240             END IF
00241    10    CONTINUE
00242       ELSE
00243 *
00244 *        Reduce to lower bidiagonal form
00245 *
00246          DO 20 I = 1, NB
00247 *
00248 *           Update A(i,i:n)
00249 *
00250             CALL CLACGV( N-I+1, A( I, I ), LDA )
00251             CALL CLACGV( I-1, A( I, 1 ), LDA )
00252             CALL CGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
00253      $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
00254             CALL CLACGV( I-1, A( I, 1 ), LDA )
00255             CALL CLACGV( I-1, X( I, 1 ), LDX )
00256             CALL CGEMV( 'Conjugate transpose', I-1, N-I+1, -ONE,
00257      $                  A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ),
00258      $                  LDA )
00259             CALL CLACGV( I-1, X( I, 1 ), LDX )
00260 *
00261 *           Generate reflection P(i) to annihilate A(i,i+1:n)
00262 *
00263             ALPHA = A( I, I )
00264             CALL CLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
00265      $                   TAUP( I ) )
00266             D( I ) = ALPHA
00267             IF( I.LT.M ) THEN
00268                A( I, I ) = ONE
00269 *
00270 *              Compute X(i+1:m,i)
00271 *
00272                CALL CGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
00273      $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
00274                CALL CGEMV( 'Conjugate transpose', N-I+1, I-1, ONE,
00275      $                     Y( I, 1 ), LDY, A( I, I ), LDA, ZERO,
00276      $                     X( 1, I ), 1 )
00277                CALL CGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
00278      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
00279                CALL CGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
00280      $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
00281                CALL CGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
00282      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
00283                CALL CSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
00284                CALL CLACGV( N-I+1, A( I, I ), LDA )
00285 *
00286 *              Update A(i+1:m,i)
00287 *
00288                CALL CLACGV( I-1, Y( I, 1 ), LDY )
00289                CALL CGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
00290      $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
00291                CALL CLACGV( I-1, Y( I, 1 ), LDY )
00292                CALL CGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
00293      $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
00294 *
00295 *              Generate reflection Q(i) to annihilate A(i+2:m,i)
00296 *
00297                ALPHA = A( I+1, I )
00298                CALL CLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
00299      $                      TAUQ( I ) )
00300                E( I ) = ALPHA
00301                A( I+1, I ) = ONE
00302 *
00303 *              Compute Y(i+1:n,i)
00304 *
00305                CALL CGEMV( 'Conjugate transpose', M-I, N-I, ONE,
00306      $                     A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO,
00307      $                     Y( I+1, I ), 1 )
00308                CALL CGEMV( 'Conjugate transpose', M-I, I-1, ONE,
00309      $                     A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
00310      $                     Y( 1, I ), 1 )
00311                CALL CGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
00312      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
00313                CALL CGEMV( 'Conjugate transpose', M-I, I, ONE,
00314      $                     X( I+1, 1 ), LDX, A( I+1, I ), 1, ZERO,
00315      $                     Y( 1, I ), 1 )
00316                CALL CGEMV( 'Conjugate transpose', I, N-I, -ONE,
00317      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
00318      $                     Y( I+1, I ), 1 )
00319                CALL CSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
00320             ELSE
00321                CALL CLACGV( N-I+1, A( I, I ), LDA )
00322             END IF
00323    20    CONTINUE
00324       END IF
00325       RETURN
00326 *
00327 *     End of CLABRD
00328 *
00329       END
 All Files Functions