LAPACK 3.3.1
Linear Algebra PACKage

cungtr.f

Go to the documentation of this file.
00001       SUBROUTINE CUNGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
00002 *
00003 *  -- LAPACK routine (version 3.2) --
00004 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00005 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00006 *     November 2006
00007 *
00008 *     .. Scalar Arguments ..
00009       CHARACTER          UPLO
00010       INTEGER            INFO, LDA, LWORK, N
00011 *     ..
00012 *     .. Array Arguments ..
00013       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
00014 *     ..
00015 *
00016 *  Purpose
00017 *  =======
00018 *
00019 *  CUNGTR generates a complex unitary matrix Q which is defined as the
00020 *  product of n-1 elementary reflectors of order N, as returned by
00021 *  CHETRD:
00022 *
00023 *  if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
00024 *
00025 *  if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
00026 *
00027 *  Arguments
00028 *  =========
00029 *
00030 *  UPLO    (input) CHARACTER*1
00031 *          = 'U': Upper triangle of A contains elementary reflectors
00032 *                 from CHETRD;
00033 *          = 'L': Lower triangle of A contains elementary reflectors
00034 *                 from CHETRD.
00035 *
00036 *  N       (input) INTEGER
00037 *          The order of the matrix Q. N >= 0.
00038 *
00039 *  A       (input/output) COMPLEX array, dimension (LDA,N)
00040 *          On entry, the vectors which define the elementary reflectors,
00041 *          as returned by CHETRD.
00042 *          On exit, the N-by-N unitary matrix Q.
00043 *
00044 *  LDA     (input) INTEGER
00045 *          The leading dimension of the array A. LDA >= N.
00046 *
00047 *  TAU     (input) COMPLEX array, dimension (N-1)
00048 *          TAU(i) must contain the scalar factor of the elementary
00049 *          reflector H(i), as returned by CHETRD.
00050 *
00051 *  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
00052 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
00053 *
00054 *  LWORK   (input) INTEGER
00055 *          The dimension of the array WORK. LWORK >= N-1.
00056 *          For optimum performance LWORK >= (N-1)*NB, where NB is
00057 *          the optimal blocksize.
00058 *
00059 *          If LWORK = -1, then a workspace query is assumed; the routine
00060 *          only calculates the optimal size of the WORK array, returns
00061 *          this value as the first entry of the WORK array, and no error
00062 *          message related to LWORK is issued by XERBLA.
00063 *
00064 *  INFO    (output) INTEGER
00065 *          = 0:  successful exit
00066 *          < 0:  if INFO = -i, the i-th argument had an illegal value
00067 *
00068 *  =====================================================================
00069 *
00070 *     .. Parameters ..
00071       COMPLEX            ZERO, ONE
00072       PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ),
00073      $                   ONE = ( 1.0E+0, 0.0E+0 ) )
00074 *     ..
00075 *     .. Local Scalars ..
00076       LOGICAL            LQUERY, UPPER
00077       INTEGER            I, IINFO, J, LWKOPT, NB
00078 *     ..
00079 *     .. External Functions ..
00080       LOGICAL            LSAME
00081       INTEGER            ILAENV
00082       EXTERNAL           ILAENV, LSAME
00083 *     ..
00084 *     .. External Subroutines ..
00085       EXTERNAL           CUNGQL, CUNGQR, XERBLA
00086 *     ..
00087 *     .. Intrinsic Functions ..
00088       INTRINSIC          MAX
00089 *     ..
00090 *     .. Executable Statements ..
00091 *
00092 *     Test the input arguments
00093 *
00094       INFO = 0
00095       LQUERY = ( LWORK.EQ.-1 )
00096       UPPER = LSAME( UPLO, 'U' )
00097       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
00098          INFO = -1
00099       ELSE IF( N.LT.0 ) THEN
00100          INFO = -2
00101       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
00102          INFO = -4
00103       ELSE IF( LWORK.LT.MAX( 1, N-1 ) .AND. .NOT.LQUERY ) THEN
00104          INFO = -7
00105       END IF
00106 *
00107       IF( INFO.EQ.0 ) THEN
00108          IF ( UPPER ) THEN
00109            NB = ILAENV( 1, 'CUNGQL', ' ', N-1, N-1, N-1, -1 )
00110          ELSE
00111            NB = ILAENV( 1, 'CUNGQR', ' ', N-1, N-1, N-1, -1 )
00112          END IF
00113          LWKOPT = MAX( 1, N-1 )*NB
00114          WORK( 1 ) = LWKOPT
00115       END IF
00116 *
00117       IF( INFO.NE.0 ) THEN
00118          CALL XERBLA( 'CUNGTR', -INFO )
00119          RETURN
00120       ELSE IF( LQUERY ) THEN
00121          RETURN
00122       END IF
00123 *
00124 *     Quick return if possible
00125 *
00126       IF( N.EQ.0 ) THEN
00127          WORK( 1 ) = 1
00128          RETURN
00129       END IF
00130 *
00131       IF( UPPER ) THEN
00132 *
00133 *        Q was determined by a call to CHETRD with UPLO = 'U'
00134 *
00135 *        Shift the vectors which define the elementary reflectors one
00136 *        column to the left, and set the last row and column of Q to
00137 *        those of the unit matrix
00138 *
00139          DO 20 J = 1, N - 1
00140             DO 10 I = 1, J - 1
00141                A( I, J ) = A( I, J+1 )
00142    10       CONTINUE
00143             A( N, J ) = ZERO
00144    20    CONTINUE
00145          DO 30 I = 1, N - 1
00146             A( I, N ) = ZERO
00147    30    CONTINUE
00148          A( N, N ) = ONE
00149 *
00150 *        Generate Q(1:n-1,1:n-1)
00151 *
00152          CALL CUNGQL( N-1, N-1, N-1, A, LDA, TAU, WORK, LWORK, IINFO )
00153 *
00154       ELSE
00155 *
00156 *        Q was determined by a call to CHETRD with UPLO = 'L'.
00157 *
00158 *        Shift the vectors which define the elementary reflectors one
00159 *        column to the right, and set the first row and column of Q to
00160 *        those of the unit matrix
00161 *
00162          DO 50 J = N, 2, -1
00163             A( 1, J ) = ZERO
00164             DO 40 I = J + 1, N
00165                A( I, J ) = A( I, J-1 )
00166    40       CONTINUE
00167    50    CONTINUE
00168          A( 1, 1 ) = ONE
00169          DO 60 I = 2, N
00170             A( I, 1 ) = ZERO
00171    60    CONTINUE
00172          IF( N.GT.1 ) THEN
00173 *
00174 *           Generate Q(2:n,2:n)
00175 *
00176             CALL CUNGQR( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
00177      $                   LWORK, IINFO )
00178          END IF
00179       END IF
00180       WORK( 1 ) = LWKOPT
00181       RETURN
00182 *
00183 *     End of CUNGTR
00184 *
00185       END
 All Files Functions