LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE CDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, 00002 $ A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, 00003 $ NOUT ) 00004 * 00005 * -- LAPACK test routine (version 3.3.1) -- 00006 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00007 * -- April 2011 -- 00008 * 00009 * .. Scalar Arguments .. 00010 LOGICAL TSTERR 00011 INTEGER NMAX, NN, NOUT, NRHS 00012 REAL THRESH 00013 * .. 00014 * .. Array Arguments .. 00015 LOGICAL DOTYPE( * ) 00016 INTEGER IWORK( * ), NVAL( * ) 00017 REAL RWORK( * ) 00018 COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), 00019 $ WORK( * ), X( * ), XACT( * ) 00020 * .. 00021 * 00022 * Purpose 00023 * ======= 00024 * 00025 * CDRVHE tests the driver routines CHESV, -SVX, and -SVXX. 00026 * 00027 * Note that this file is used only when the XBLAS are available, 00028 * otherwise cdrvhe.f defines this subroutine. 00029 * 00030 * Arguments 00031 * ========= 00032 * 00033 * DOTYPE (input) LOGICAL array, dimension (NTYPES) 00034 * The matrix types to be used for testing. Matrices of type j 00035 * (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = 00036 * .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. 00037 * 00038 * NN (input) INTEGER 00039 * The number of values of N contained in the vector NVAL. 00040 * 00041 * NVAL (input) INTEGER array, dimension (NN) 00042 * The values of the matrix dimension N. 00043 * 00044 * NRHS (input) INTEGER 00045 * The number of right hand side vectors to be generated for 00046 * each linear system. 00047 * 00048 * THRESH (input) REAL 00049 * The threshold value for the test ratios. A result is 00050 * included in the output file if RESULT >= THRESH. To have 00051 * every test ratio printed, use THRESH = 0. 00052 * 00053 * TSTERR (input) LOGICAL 00054 * Flag that indicates whether error exits are to be tested. 00055 * 00056 * NMAX (input) INTEGER 00057 * The maximum value permitted for N, used in dimensioning the 00058 * work arrays. 00059 * 00060 * A (workspace) COMPLEX array, dimension (NMAX*NMAX) 00061 * 00062 * AFAC (workspace) COMPLEX array, dimension (NMAX*NMAX) 00063 * 00064 * AINV (workspace) COMPLEX array, dimension (NMAX*NMAX) 00065 * 00066 * B (workspace) COMPLEX array, dimension (NMAX*NRHS) 00067 * 00068 * X (workspace) COMPLEX array, dimension (NMAX*NRHS) 00069 * 00070 * XACT (workspace) COMPLEX array, dimension (NMAX*NRHS) 00071 * 00072 * WORK (workspace) COMPLEX array, dimension 00073 * (NMAX*max(2,NRHS)) 00074 * 00075 * RWORK (workspace) REAL array, dimension (NMAX+2*NRHS) 00076 * 00077 * IWORK (workspace) INTEGER array, dimension (NMAX) 00078 * 00079 * NOUT (input) INTEGER 00080 * The unit number for output. 00081 * 00082 * ===================================================================== 00083 * 00084 * .. Parameters .. 00085 REAL ONE, ZERO 00086 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 00087 INTEGER NTYPES, NTESTS 00088 PARAMETER ( NTYPES = 10, NTESTS = 6 ) 00089 INTEGER NFACT 00090 PARAMETER ( NFACT = 2 ) 00091 * .. 00092 * .. Local Scalars .. 00093 LOGICAL ZEROT 00094 CHARACTER DIST, EQUED, FACT, TYPE, UPLO, XTYPE 00095 CHARACTER*3 PATH 00096 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO, 00097 $ IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N, 00098 $ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT, 00099 $ N_ERR_BNDS 00100 REAL AINVNM, ANORM, CNDNUM, RCOND, RCONDC, 00101 $ RPVGRW_SVXX 00102 * .. 00103 * .. Local Arrays .. 00104 CHARACTER FACTS( NFACT ), UPLOS( 2 ) 00105 INTEGER ISEED( 4 ), ISEEDY( 4 ) 00106 REAL RESULT( NTESTS ), BERR( NRHS ), 00107 $ ERRBNDS_N( NRHS, 3 ), ERRBNDS_C( NRHS, 3 ) 00108 * .. 00109 * .. External Functions .. 00110 REAL CLANHE, SGET06 00111 EXTERNAL CLANHE, SGET06 00112 * .. 00113 * .. External Subroutines .. 00114 EXTERNAL ALADHD, ALAERH, ALASVM, CERRVX, CGET04, CHESV, 00115 $ CHESVX, CHET01, CHETRF, CHETRI2, CLACPY, 00116 $ CLAIPD, CLARHS, CLASET, CLATB4, CLATMS, CPOT02, 00117 $ CPOT05, XLAENV, CHESVXX 00118 * .. 00119 * .. Scalars in Common .. 00120 LOGICAL LERR, OK 00121 CHARACTER*32 SRNAMT 00122 INTEGER INFOT, NUNIT 00123 * .. 00124 * .. Common blocks .. 00125 COMMON / INFOC / INFOT, NUNIT, OK, LERR 00126 COMMON / SRNAMC / SRNAMT 00127 * .. 00128 * .. Intrinsic Functions .. 00129 INTRINSIC CMPLX, MAX, MIN 00130 * .. 00131 * .. Data statements .. 00132 DATA ISEEDY / 1988, 1989, 1990, 1991 / 00133 DATA UPLOS / 'U', 'L' / , FACTS / 'F', 'N' / 00134 * .. 00135 * .. Executable Statements .. 00136 * 00137 * Initialize constants and the random number seed. 00138 * 00139 PATH( 1: 1 ) = 'C' 00140 PATH( 2: 3 ) = 'HE' 00141 NRUN = 0 00142 NFAIL = 0 00143 NERRS = 0 00144 DO 10 I = 1, 4 00145 ISEED( I ) = ISEEDY( I ) 00146 10 CONTINUE 00147 LWORK = MAX( 2*NMAX, NMAX*NRHS ) 00148 * 00149 * Test the error exits 00150 * 00151 IF( TSTERR ) 00152 $ CALL CERRVX( PATH, NOUT ) 00153 INFOT = 0 00154 * 00155 * Set the block size and minimum block size for testing. 00156 * 00157 NB = 1 00158 NBMIN = 2 00159 CALL XLAENV( 1, NB ) 00160 CALL XLAENV( 2, NBMIN ) 00161 * 00162 * Do for each value of N in NVAL 00163 * 00164 DO 180 IN = 1, NN 00165 N = NVAL( IN ) 00166 LDA = MAX( N, 1 ) 00167 XTYPE = 'N' 00168 NIMAT = NTYPES 00169 IF( N.LE.0 ) 00170 $ NIMAT = 1 00171 * 00172 DO 170 IMAT = 1, NIMAT 00173 * 00174 * Do the tests only if DOTYPE( IMAT ) is true. 00175 * 00176 IF( .NOT.DOTYPE( IMAT ) ) 00177 $ GO TO 170 00178 * 00179 * Skip types 3, 4, 5, or 6 if the matrix size is too small. 00180 * 00181 ZEROT = IMAT.GE.3 .AND. IMAT.LE.6 00182 IF( ZEROT .AND. N.LT.IMAT-2 ) 00183 $ GO TO 170 00184 * 00185 * Do first for UPLO = 'U', then for UPLO = 'L' 00186 * 00187 DO 160 IUPLO = 1, 2 00188 UPLO = UPLOS( IUPLO ) 00189 * 00190 * Set up parameters with CLATB4 and generate a test matrix 00191 * with CLATMS. 00192 * 00193 CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE, 00194 $ CNDNUM, DIST ) 00195 * 00196 SRNAMT = 'CLATMS' 00197 CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, 00198 $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK, 00199 $ INFO ) 00200 * 00201 * Check error code from CLATMS. 00202 * 00203 IF( INFO.NE.0 ) THEN 00204 CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N, -1, 00205 $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) 00206 GO TO 160 00207 END IF 00208 * 00209 * For types 3-6, zero one or more rows and columns of the 00210 * matrix to test that INFO is returned correctly. 00211 * 00212 IF( ZEROT ) THEN 00213 IF( IMAT.EQ.3 ) THEN 00214 IZERO = 1 00215 ELSE IF( IMAT.EQ.4 ) THEN 00216 IZERO = N 00217 ELSE 00218 IZERO = N / 2 + 1 00219 END IF 00220 * 00221 IF( IMAT.LT.6 ) THEN 00222 * 00223 * Set row and column IZERO to zero. 00224 * 00225 IF( IUPLO.EQ.1 ) THEN 00226 IOFF = ( IZERO-1 )*LDA 00227 DO 20 I = 1, IZERO - 1 00228 A( IOFF+I ) = ZERO 00229 20 CONTINUE 00230 IOFF = IOFF + IZERO 00231 DO 30 I = IZERO, N 00232 A( IOFF ) = ZERO 00233 IOFF = IOFF + LDA 00234 30 CONTINUE 00235 ELSE 00236 IOFF = IZERO 00237 DO 40 I = 1, IZERO - 1 00238 A( IOFF ) = ZERO 00239 IOFF = IOFF + LDA 00240 40 CONTINUE 00241 IOFF = IOFF - IZERO 00242 DO 50 I = IZERO, N 00243 A( IOFF+I ) = ZERO 00244 50 CONTINUE 00245 END IF 00246 ELSE 00247 IOFF = 0 00248 IF( IUPLO.EQ.1 ) THEN 00249 * 00250 * Set the first IZERO rows and columns to zero. 00251 * 00252 DO 70 J = 1, N 00253 I2 = MIN( J, IZERO ) 00254 DO 60 I = 1, I2 00255 A( IOFF+I ) = ZERO 00256 60 CONTINUE 00257 IOFF = IOFF + LDA 00258 70 CONTINUE 00259 ELSE 00260 * 00261 * Set the last IZERO rows and columns to zero. 00262 * 00263 DO 90 J = 1, N 00264 I1 = MAX( J, IZERO ) 00265 DO 80 I = I1, N 00266 A( IOFF+I ) = ZERO 00267 80 CONTINUE 00268 IOFF = IOFF + LDA 00269 90 CONTINUE 00270 END IF 00271 END IF 00272 ELSE 00273 IZERO = 0 00274 END IF 00275 * 00276 * Set the imaginary part of the diagonals. 00277 * 00278 CALL CLAIPD( N, A, LDA+1, 0 ) 00279 * 00280 DO 150 IFACT = 1, NFACT 00281 * 00282 * Do first for FACT = 'F', then for other values. 00283 * 00284 FACT = FACTS( IFACT ) 00285 * 00286 * Compute the condition number for comparison with 00287 * the value returned by CHESVX. 00288 * 00289 IF( ZEROT ) THEN 00290 IF( IFACT.EQ.1 ) 00291 $ GO TO 150 00292 RCONDC = ZERO 00293 * 00294 ELSE IF( IFACT.EQ.1 ) THEN 00295 * 00296 * Compute the 1-norm of A. 00297 * 00298 ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK ) 00299 * 00300 * Factor the matrix A. 00301 * 00302 CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) 00303 CALL CHETRF( UPLO, N, AFAC, LDA, IWORK, WORK, 00304 $ LWORK, INFO ) 00305 * 00306 * Compute inv(A) and take its norm. 00307 * 00308 CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA ) 00309 LWORK = (N+NB+1)*(NB+3) 00310 CALL CHETRI2( UPLO, N, AINV, LDA, IWORK, WORK, 00311 $ LWORK, INFO ) 00312 AINVNM = CLANHE( '1', UPLO, N, AINV, LDA, RWORK ) 00313 * 00314 * Compute the 1-norm condition number of A. 00315 * 00316 IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN 00317 RCONDC = ONE 00318 ELSE 00319 RCONDC = ( ONE / ANORM ) / AINVNM 00320 END IF 00321 END IF 00322 * 00323 * Form an exact solution and set the right hand side. 00324 * 00325 SRNAMT = 'CLARHS' 00326 CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU, 00327 $ NRHS, A, LDA, XACT, LDA, B, LDA, ISEED, 00328 $ INFO ) 00329 XTYPE = 'C' 00330 * 00331 * --- Test CHESV --- 00332 * 00333 IF( IFACT.EQ.2 ) THEN 00334 CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) 00335 CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) 00336 * 00337 * Factor the matrix and solve the system using CHESV. 00338 * 00339 SRNAMT = 'CHESV ' 00340 CALL CHESV( UPLO, N, NRHS, AFAC, LDA, IWORK, X, 00341 $ LDA, WORK, LWORK, INFO ) 00342 * 00343 * Adjust the expected value of INFO to account for 00344 * pivoting. 00345 * 00346 K = IZERO 00347 IF( K.GT.0 ) THEN 00348 100 CONTINUE 00349 IF( IWORK( K ).LT.0 ) THEN 00350 IF( IWORK( K ).NE.-K ) THEN 00351 K = -IWORK( K ) 00352 GO TO 100 00353 END IF 00354 ELSE IF( IWORK( K ).NE.K ) THEN 00355 K = IWORK( K ) 00356 GO TO 100 00357 END IF 00358 END IF 00359 * 00360 * Check error code from CHESV . 00361 * 00362 IF( INFO.NE.K ) THEN 00363 CALL ALAERH( PATH, 'CHESV ', INFO, K, UPLO, N, 00364 $ N, -1, -1, NRHS, IMAT, NFAIL, 00365 $ NERRS, NOUT ) 00366 GO TO 120 00367 ELSE IF( INFO.NE.0 ) THEN 00368 GO TO 120 00369 END IF 00370 * 00371 * Reconstruct matrix from factors and compute 00372 * residual. 00373 * 00374 CALL CHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK, 00375 $ AINV, LDA, RWORK, RESULT( 1 ) ) 00376 * 00377 * Compute residual of the computed solution. 00378 * 00379 CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00380 CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, 00381 $ LDA, RWORK, RESULT( 2 ) ) 00382 * 00383 * Check solution from generated exact solution. 00384 * 00385 CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00386 $ RESULT( 3 ) ) 00387 NT = 3 00388 * 00389 * Print information about the tests that did not pass 00390 * the threshold. 00391 * 00392 DO 110 K = 1, NT 00393 IF( RESULT( K ).GE.THRESH ) THEN 00394 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00395 $ CALL ALADHD( NOUT, PATH ) 00396 WRITE( NOUT, FMT = 9999 )'CHESV ', UPLO, N, 00397 $ IMAT, K, RESULT( K ) 00398 NFAIL = NFAIL + 1 00399 END IF 00400 110 CONTINUE 00401 NRUN = NRUN + NT 00402 120 CONTINUE 00403 END IF 00404 * 00405 * --- Test CHESVX --- 00406 * 00407 IF( IFACT.EQ.2 ) 00408 $ CALL CLASET( UPLO, N, N, CMPLX( ZERO ), 00409 $ CMPLX( ZERO ), AFAC, LDA ) 00410 CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ), 00411 $ CMPLX( ZERO ), X, LDA ) 00412 * 00413 * Solve the system and compute the condition number and 00414 * error bounds using CHESVX. 00415 * 00416 SRNAMT = 'CHESVX' 00417 CALL CHESVX( FACT, UPLO, N, NRHS, A, LDA, AFAC, LDA, 00418 $ IWORK, B, LDA, X, LDA, RCOND, RWORK, 00419 $ RWORK( NRHS+1 ), WORK, LWORK, 00420 $ RWORK( 2*NRHS+1 ), INFO ) 00421 * 00422 * Adjust the expected value of INFO to account for 00423 * pivoting. 00424 * 00425 K = IZERO 00426 IF( K.GT.0 ) THEN 00427 130 CONTINUE 00428 IF( IWORK( K ).LT.0 ) THEN 00429 IF( IWORK( K ).NE.-K ) THEN 00430 K = -IWORK( K ) 00431 GO TO 130 00432 END IF 00433 ELSE IF( IWORK( K ).NE.K ) THEN 00434 K = IWORK( K ) 00435 GO TO 130 00436 END IF 00437 END IF 00438 * 00439 * Check the error code from CHESVX. 00440 * 00441 IF( INFO.NE.K ) THEN 00442 CALL ALAERH( PATH, 'CHESVX', INFO, K, FACT // UPLO, 00443 $ N, N, -1, -1, NRHS, IMAT, NFAIL, 00444 $ NERRS, NOUT ) 00445 GO TO 150 00446 END IF 00447 * 00448 IF( INFO.EQ.0 ) THEN 00449 IF( IFACT.GE.2 ) THEN 00450 * 00451 * Reconstruct matrix from factors and compute 00452 * residual. 00453 * 00454 CALL CHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK, 00455 $ AINV, LDA, RWORK( 2*NRHS+1 ), 00456 $ RESULT( 1 ) ) 00457 K1 = 1 00458 ELSE 00459 K1 = 2 00460 END IF 00461 * 00462 * Compute residual of the computed solution. 00463 * 00464 CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00465 CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, 00466 $ LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) ) 00467 * 00468 * Check solution from generated exact solution. 00469 * 00470 CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00471 $ RESULT( 3 ) ) 00472 * 00473 * Check the error bounds from iterative refinement. 00474 * 00475 CALL CPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA, 00476 $ XACT, LDA, RWORK, RWORK( NRHS+1 ), 00477 $ RESULT( 4 ) ) 00478 ELSE 00479 K1 = 6 00480 END IF 00481 * 00482 * Compare RCOND from CHESVX with the computed value 00483 * in RCONDC. 00484 * 00485 RESULT( 6 ) = SGET06( RCOND, RCONDC ) 00486 * 00487 * Print information about the tests that did not pass 00488 * the threshold. 00489 * 00490 DO 140 K = K1, 6 00491 IF( RESULT( K ).GE.THRESH ) THEN 00492 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00493 $ CALL ALADHD( NOUT, PATH ) 00494 WRITE( NOUT, FMT = 9998 )'CHESVX', FACT, UPLO, 00495 $ N, IMAT, K, RESULT( K ) 00496 NFAIL = NFAIL + 1 00497 END IF 00498 140 CONTINUE 00499 NRUN = NRUN + 7 - K1 00500 * 00501 * --- Test CHESVXX --- 00502 * 00503 * Restore the matrices A and B. 00504 * 00505 IF( IFACT.EQ.2 ) 00506 $ CALL CLASET( UPLO, N, N, CMPLX( ZERO ), 00507 $ CMPLX( ZERO ), AFAC, LDA ) 00508 CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ), 00509 $ CMPLX( ZERO ), X, LDA ) 00510 * 00511 * Solve the system and compute the condition number 00512 * and error bounds using CHESVXX. 00513 * 00514 SRNAMT = 'CHESVXX' 00515 N_ERR_BNDS = 3 00516 EQUED = 'N' 00517 CALL CHESVXX( FACT, UPLO, N, NRHS, A, LDA, AFAC, 00518 $ LDA, IWORK, EQUED, WORK( N+1 ), B, LDA, X, 00519 $ LDA, RCOND, RPVGRW_SVXX, BERR, N_ERR_BNDS, 00520 $ ERRBNDS_N, ERRBNDS_C, 0, ZERO, WORK, 00521 $ IWORK( N+1 ), INFO ) 00522 * 00523 * Adjust the expected value of INFO to account for 00524 * pivoting. 00525 * 00526 K = IZERO 00527 IF( K.GT.0 ) THEN 00528 135 CONTINUE 00529 IF( IWORK( K ).LT.0 ) THEN 00530 IF( IWORK( K ).NE.-K ) THEN 00531 K = -IWORK( K ) 00532 GO TO 135 00533 END IF 00534 ELSE IF( IWORK( K ).NE.K ) THEN 00535 K = IWORK( K ) 00536 GO TO 135 00537 END IF 00538 END IF 00539 * 00540 * Check the error code from CHESVXX. 00541 * 00542 IF( INFO.NE.K ) THEN 00543 CALL ALAERH( PATH, 'CHESVXX', INFO, K, 00544 $ FACT // UPLO, N, N, -1, -1, NRHS, IMAT, NFAIL, 00545 $ NERRS, NOUT ) 00546 GO TO 150 00547 END IF 00548 * 00549 IF( INFO.EQ.0 ) THEN 00550 IF( IFACT.GE.2 ) THEN 00551 * 00552 * Reconstruct matrix from factors and compute 00553 * residual. 00554 * 00555 CALL CHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK, 00556 $ AINV, LDA, RWORK(2*NRHS+1), 00557 $ RESULT( 1 ) ) 00558 K1 = 1 00559 ELSE 00560 K1 = 2 00561 END IF 00562 * 00563 * Compute residual of the computed solution. 00564 * 00565 CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00566 CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, 00567 $ LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) ) 00568 RESULT( 2 ) = 0.0 00569 * 00570 * Check solution from generated exact solution. 00571 * 00572 CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00573 $ RESULT( 3 ) ) 00574 * 00575 * Check the error bounds from iterative refinement. 00576 * 00577 CALL CPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA, 00578 $ XACT, LDA, RWORK, RWORK( NRHS+1 ), 00579 $ RESULT( 4 ) ) 00580 ELSE 00581 K1 = 6 00582 END IF 00583 * 00584 * Compare RCOND from CHESVXX with the computed value 00585 * in RCONDC. 00586 * 00587 RESULT( 6 ) = SGET06( RCOND, RCONDC ) 00588 * 00589 * Print information about the tests that did not pass 00590 * the threshold. 00591 * 00592 DO 85 K = K1, 6 00593 IF( RESULT( K ).GE.THRESH ) THEN 00594 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00595 $ CALL ALADHD( NOUT, PATH ) 00596 WRITE( NOUT, FMT = 9998 )'CHESVXX', 00597 $ FACT, UPLO, N, IMAT, K, 00598 $ RESULT( K ) 00599 NFAIL = NFAIL + 1 00600 END IF 00601 85 CONTINUE 00602 NRUN = NRUN + 7 - K1 00603 * 00604 150 CONTINUE 00605 * 00606 160 CONTINUE 00607 170 CONTINUE 00608 180 CONTINUE 00609 * 00610 * Print a summary of the results. 00611 * 00612 CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS ) 00613 * 00614 00615 * Test Error Bounds from CHESVXX 00616 00617 CALL CEBCHVXX(THRESH, PATH) 00618 00619 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2, 00620 $ ', test ', I2, ', ratio =', G12.5 ) 00621 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5, 00622 $ ', type ', I2, ', test ', I2, ', ratio =', G12.5 ) 00623 RETURN 00624 * 00625 * End of CDRVHE 00626 * 00627 END