LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE DLAGSY( N, K, D, A, LDA, ISEED, WORK, INFO ) 00002 * 00003 * -- LAPACK auxiliary test routine (version 3.1) 00004 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00005 * November 2006 00006 * 00007 * .. Scalar Arguments .. 00008 INTEGER INFO, K, LDA, N 00009 * .. 00010 * .. Array Arguments .. 00011 INTEGER ISEED( 4 ) 00012 DOUBLE PRECISION A( LDA, * ), D( * ), WORK( * ) 00013 * .. 00014 * 00015 * Purpose 00016 * ======= 00017 * 00018 * DLAGSY generates a real symmetric matrix A, by pre- and post- 00019 * multiplying a real diagonal matrix D with a random orthogonal matrix: 00020 * A = U*D*U'. The semi-bandwidth may then be reduced to k by additional 00021 * orthogonal transformations. 00022 * 00023 * Arguments 00024 * ========= 00025 * 00026 * N (input) INTEGER 00027 * The order of the matrix A. N >= 0. 00028 * 00029 * K (input) INTEGER 00030 * The number of nonzero subdiagonals within the band of A. 00031 * 0 <= K <= N-1. 00032 * 00033 * D (input) DOUBLE PRECISION array, dimension (N) 00034 * The diagonal elements of the diagonal matrix D. 00035 * 00036 * A (output) DOUBLE PRECISION array, dimension (LDA,N) 00037 * The generated n by n symmetric matrix A (the full matrix is 00038 * stored). 00039 * 00040 * LDA (input) INTEGER 00041 * The leading dimension of the array A. LDA >= N. 00042 * 00043 * ISEED (input/output) INTEGER array, dimension (4) 00044 * On entry, the seed of the random number generator; the array 00045 * elements must be between 0 and 4095, and ISEED(4) must be 00046 * odd. 00047 * On exit, the seed is updated. 00048 * 00049 * WORK (workspace) DOUBLE PRECISION array, dimension (2*N) 00050 * 00051 * INFO (output) INTEGER 00052 * = 0: successful exit 00053 * < 0: if INFO = -i, the i-th argument had an illegal value 00054 * 00055 * ===================================================================== 00056 * 00057 * .. Parameters .. 00058 DOUBLE PRECISION ZERO, ONE, HALF 00059 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 ) 00060 * .. 00061 * .. Local Scalars .. 00062 INTEGER I, J 00063 DOUBLE PRECISION ALPHA, TAU, WA, WB, WN 00064 * .. 00065 * .. External Subroutines .. 00066 EXTERNAL DAXPY, DGEMV, DGER, DLARNV, DSCAL, DSYMV, 00067 $ DSYR2, XERBLA 00068 * .. 00069 * .. External Functions .. 00070 DOUBLE PRECISION DDOT, DNRM2 00071 EXTERNAL DDOT, DNRM2 00072 * .. 00073 * .. Intrinsic Functions .. 00074 INTRINSIC MAX, SIGN 00075 * .. 00076 * .. Executable Statements .. 00077 * 00078 * Test the input arguments 00079 * 00080 INFO = 0 00081 IF( N.LT.0 ) THEN 00082 INFO = -1 00083 ELSE IF( K.LT.0 .OR. K.GT.N-1 ) THEN 00084 INFO = -2 00085 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 00086 INFO = -5 00087 END IF 00088 IF( INFO.LT.0 ) THEN 00089 CALL XERBLA( 'DLAGSY', -INFO ) 00090 RETURN 00091 END IF 00092 * 00093 * initialize lower triangle of A to diagonal matrix 00094 * 00095 DO 20 J = 1, N 00096 DO 10 I = J + 1, N 00097 A( I, J ) = ZERO 00098 10 CONTINUE 00099 20 CONTINUE 00100 DO 30 I = 1, N 00101 A( I, I ) = D( I ) 00102 30 CONTINUE 00103 * 00104 * Generate lower triangle of symmetric matrix 00105 * 00106 DO 40 I = N - 1, 1, -1 00107 * 00108 * generate random reflection 00109 * 00110 CALL DLARNV( 3, ISEED, N-I+1, WORK ) 00111 WN = DNRM2( N-I+1, WORK, 1 ) 00112 WA = SIGN( WN, WORK( 1 ) ) 00113 IF( WN.EQ.ZERO ) THEN 00114 TAU = ZERO 00115 ELSE 00116 WB = WORK( 1 ) + WA 00117 CALL DSCAL( N-I, ONE / WB, WORK( 2 ), 1 ) 00118 WORK( 1 ) = ONE 00119 TAU = WB / WA 00120 END IF 00121 * 00122 * apply random reflection to A(i:n,i:n) from the left 00123 * and the right 00124 * 00125 * compute y := tau * A * u 00126 * 00127 CALL DSYMV( 'Lower', N-I+1, TAU, A( I, I ), LDA, WORK, 1, ZERO, 00128 $ WORK( N+1 ), 1 ) 00129 * 00130 * compute v := y - 1/2 * tau * ( y, u ) * u 00131 * 00132 ALPHA = -HALF*TAU*DDOT( N-I+1, WORK( N+1 ), 1, WORK, 1 ) 00133 CALL DAXPY( N-I+1, ALPHA, WORK, 1, WORK( N+1 ), 1 ) 00134 * 00135 * apply the transformation as a rank-2 update to A(i:n,i:n) 00136 * 00137 CALL DSYR2( 'Lower', N-I+1, -ONE, WORK, 1, WORK( N+1 ), 1, 00138 $ A( I, I ), LDA ) 00139 40 CONTINUE 00140 * 00141 * Reduce number of subdiagonals to K 00142 * 00143 DO 60 I = 1, N - 1 - K 00144 * 00145 * generate reflection to annihilate A(k+i+1:n,i) 00146 * 00147 WN = DNRM2( N-K-I+1, A( K+I, I ), 1 ) 00148 WA = SIGN( WN, A( K+I, I ) ) 00149 IF( WN.EQ.ZERO ) THEN 00150 TAU = ZERO 00151 ELSE 00152 WB = A( K+I, I ) + WA 00153 CALL DSCAL( N-K-I, ONE / WB, A( K+I+1, I ), 1 ) 00154 A( K+I, I ) = ONE 00155 TAU = WB / WA 00156 END IF 00157 * 00158 * apply reflection to A(k+i:n,i+1:k+i-1) from the left 00159 * 00160 CALL DGEMV( 'Transpose', N-K-I+1, K-1, ONE, A( K+I, I+1 ), LDA, 00161 $ A( K+I, I ), 1, ZERO, WORK, 1 ) 00162 CALL DGER( N-K-I+1, K-1, -TAU, A( K+I, I ), 1, WORK, 1, 00163 $ A( K+I, I+1 ), LDA ) 00164 * 00165 * apply reflection to A(k+i:n,k+i:n) from the left and the right 00166 * 00167 * compute y := tau * A * u 00168 * 00169 CALL DSYMV( 'Lower', N-K-I+1, TAU, A( K+I, K+I ), LDA, 00170 $ A( K+I, I ), 1, ZERO, WORK, 1 ) 00171 * 00172 * compute v := y - 1/2 * tau * ( y, u ) * u 00173 * 00174 ALPHA = -HALF*TAU*DDOT( N-K-I+1, WORK, 1, A( K+I, I ), 1 ) 00175 CALL DAXPY( N-K-I+1, ALPHA, A( K+I, I ), 1, WORK, 1 ) 00176 * 00177 * apply symmetric rank-2 update to A(k+i:n,k+i:n) 00178 * 00179 CALL DSYR2( 'Lower', N-K-I+1, -ONE, A( K+I, I ), 1, WORK, 1, 00180 $ A( K+I, K+I ), LDA ) 00181 * 00182 A( K+I, I ) = -WA 00183 DO 50 J = K + I + 1, N 00184 A( J, I ) = ZERO 00185 50 CONTINUE 00186 60 CONTINUE 00187 * 00188 * Store full symmetric matrix 00189 * 00190 DO 80 J = 1, N 00191 DO 70 I = J + 1, N 00192 A( J, I ) = A( I, J ) 00193 70 CONTINUE 00194 80 CONTINUE 00195 RETURN 00196 * 00197 * End of DLAGSY 00198 * 00199 END