LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE ZUNT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RWORK, 00002 $ RESID ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 CHARACTER ROWCOL 00010 INTEGER LDU, LWORK, M, N 00011 DOUBLE PRECISION RESID 00012 * .. 00013 * .. Array Arguments .. 00014 DOUBLE PRECISION RWORK( * ) 00015 COMPLEX*16 U( LDU, * ), WORK( * ) 00016 * .. 00017 * 00018 * Purpose 00019 * ======= 00020 * 00021 * ZUNT01 checks that the matrix U is unitary by computing the ratio 00022 * 00023 * RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', 00024 * or 00025 * RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. 00026 * 00027 * Alternatively, if there isn't sufficient workspace to form 00028 * I - U*U' or I - U'*U, the ratio is computed as 00029 * 00030 * RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', 00031 * or 00032 * RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. 00033 * 00034 * where EPS is the machine precision. ROWCOL is used only if m = n; 00035 * if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is 00036 * assumed to be 'R'. 00037 * 00038 * Arguments 00039 * ========= 00040 * 00041 * ROWCOL (input) CHARACTER 00042 * Specifies whether the rows or columns of U should be checked 00043 * for orthogonality. Used only if M = N. 00044 * = 'R': Check for orthogonal rows of U 00045 * = 'C': Check for orthogonal columns of U 00046 * 00047 * M (input) INTEGER 00048 * The number of rows of the matrix U. 00049 * 00050 * N (input) INTEGER 00051 * The number of columns of the matrix U. 00052 * 00053 * U (input) COMPLEX*16 array, dimension (LDU,N) 00054 * The unitary matrix U. U is checked for orthogonal columns 00055 * if m > n or if m = n and ROWCOL = 'C'. U is checked for 00056 * orthogonal rows if m < n or if m = n and ROWCOL = 'R'. 00057 * 00058 * LDU (input) INTEGER 00059 * The leading dimension of the array U. LDU >= max(1,M). 00060 * 00061 * WORK (workspace) COMPLEX*16 array, dimension (LWORK) 00062 * 00063 * LWORK (input) INTEGER 00064 * The length of the array WORK. For best performance, LWORK 00065 * should be at least N*N if ROWCOL = 'C' or M*M if 00066 * ROWCOL = 'R', but the test will be done even if LWORK is 0. 00067 * 00068 * RWORK (workspace) DOUBLE PRECISION array, dimension (min(M,N)) 00069 * Used only if LWORK is large enough to use the Level 3 BLAS 00070 * code. 00071 * 00072 * RESID (output) DOUBLE PRECISION 00073 * RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or 00074 * RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'. 00075 * 00076 * ===================================================================== 00077 * 00078 * .. Parameters .. 00079 DOUBLE PRECISION ZERO, ONE 00080 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 00081 * .. 00082 * .. Local Scalars .. 00083 CHARACTER TRANSU 00084 INTEGER I, J, K, LDWORK, MNMIN 00085 DOUBLE PRECISION EPS 00086 COMPLEX*16 TMP, ZDUM 00087 * .. 00088 * .. External Functions .. 00089 LOGICAL LSAME 00090 DOUBLE PRECISION DLAMCH, ZLANSY 00091 COMPLEX*16 ZDOTC 00092 EXTERNAL LSAME, DLAMCH, ZLANSY, ZDOTC 00093 * .. 00094 * .. External Subroutines .. 00095 EXTERNAL ZHERK, ZLASET 00096 * .. 00097 * .. Intrinsic Functions .. 00098 INTRINSIC ABS, DBLE, DCMPLX, DIMAG, MAX, MIN 00099 * .. 00100 * .. Statement Functions .. 00101 DOUBLE PRECISION CABS1 00102 * .. 00103 * .. Statement Function definitions .. 00104 CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) ) 00105 * .. 00106 * .. Executable Statements .. 00107 * 00108 RESID = ZERO 00109 * 00110 * Quick return if possible 00111 * 00112 IF( M.LE.0 .OR. N.LE.0 ) 00113 $ RETURN 00114 * 00115 EPS = DLAMCH( 'Precision' ) 00116 IF( M.LT.N .OR. ( M.EQ.N .AND. LSAME( ROWCOL, 'R' ) ) ) THEN 00117 TRANSU = 'N' 00118 K = N 00119 ELSE 00120 TRANSU = 'C' 00121 K = M 00122 END IF 00123 MNMIN = MIN( M, N ) 00124 * 00125 IF( ( MNMIN+1 )*MNMIN.LE.LWORK ) THEN 00126 LDWORK = MNMIN 00127 ELSE 00128 LDWORK = 0 00129 END IF 00130 IF( LDWORK.GT.0 ) THEN 00131 * 00132 * Compute I - U*U' or I - U'*U. 00133 * 00134 CALL ZLASET( 'Upper', MNMIN, MNMIN, DCMPLX( ZERO ), 00135 $ DCMPLX( ONE ), WORK, LDWORK ) 00136 CALL ZHERK( 'Upper', TRANSU, MNMIN, K, -ONE, U, LDU, ONE, WORK, 00137 $ LDWORK ) 00138 * 00139 * Compute norm( I - U*U' ) / ( K * EPS ) . 00140 * 00141 RESID = ZLANSY( '1', 'Upper', MNMIN, WORK, LDWORK, RWORK ) 00142 RESID = ( RESID / DBLE( K ) ) / EPS 00143 ELSE IF( TRANSU.EQ.'C' ) THEN 00144 * 00145 * Find the maximum element in abs( I - U'*U ) / ( m * EPS ) 00146 * 00147 DO 20 J = 1, N 00148 DO 10 I = 1, J 00149 IF( I.NE.J ) THEN 00150 TMP = ZERO 00151 ELSE 00152 TMP = ONE 00153 END IF 00154 TMP = TMP - ZDOTC( M, U( 1, I ), 1, U( 1, J ), 1 ) 00155 RESID = MAX( RESID, CABS1( TMP ) ) 00156 10 CONTINUE 00157 20 CONTINUE 00158 RESID = ( RESID / DBLE( M ) ) / EPS 00159 ELSE 00160 * 00161 * Find the maximum element in abs( I - U*U' ) / ( n * EPS ) 00162 * 00163 DO 40 J = 1, M 00164 DO 30 I = 1, J 00165 IF( I.NE.J ) THEN 00166 TMP = ZERO 00167 ELSE 00168 TMP = ONE 00169 END IF 00170 TMP = TMP - ZDOTC( N, U( J, 1 ), LDU, U( I, 1 ), LDU ) 00171 RESID = MAX( RESID, CABS1( TMP ) ) 00172 30 CONTINUE 00173 40 CONTINUE 00174 RESID = ( RESID / DBLE( N ) ) / EPS 00175 END IF 00176 RETURN 00177 * 00178 * End of ZUNT01 00179 * 00180 END