LAPACK 3.3.1
Linear Algebra PACKage
|
00001 REAL FUNCTION SLA_PORCOND( UPLO, N, A, LDA, AF, LDAF, CMODE, C, 00002 $ INFO, WORK, IWORK ) 00003 * 00004 * -- LAPACK routine (version 3.2.1) -- 00005 * -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- 00006 * -- Jason Riedy of Univ. of California Berkeley. -- 00007 * -- April 2009 -- 00008 * 00009 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00010 * -- Univ. of California Berkeley and NAG Ltd. -- 00011 * 00012 IMPLICIT NONE 00013 * .. 00014 * .. Scalar Arguments .. 00015 CHARACTER UPLO 00016 INTEGER N, LDA, LDAF, INFO, CMODE 00017 REAL A( LDA, * ), AF( LDAF, * ), WORK( * ), 00018 $ C( * ) 00019 * .. 00020 * .. Array Arguments .. 00021 INTEGER IWORK( * ) 00022 * .. 00023 * 00024 * Purpose 00025 * ======= 00026 * 00027 * SLA_PORCOND Estimates the Skeel condition number of op(A) * op2(C) 00028 * where op2 is determined by CMODE as follows 00029 * CMODE = 1 op2(C) = C 00030 * CMODE = 0 op2(C) = I 00031 * CMODE = -1 op2(C) = inv(C) 00032 * The Skeel condition number cond(A) = norminf( |inv(A)||A| ) 00033 * is computed by computing scaling factors R such that 00034 * diag(R)*A*op2(C) is row equilibrated and computing the standard 00035 * infinity-norm condition number. 00036 * 00037 * Arguments 00038 * ========== 00039 * 00040 * UPLO (input) CHARACTER*1 00041 * = 'U': Upper triangle of A is stored; 00042 * = 'L': Lower triangle of A is stored. 00043 * 00044 * N (input) INTEGER 00045 * The number of linear equations, i.e., the order of the 00046 * matrix A. N >= 0. 00047 * 00048 * A (input) REAL array, dimension (LDA,N) 00049 * On entry, the N-by-N matrix A. 00050 * 00051 * LDA (input) INTEGER 00052 * The leading dimension of the array A. LDA >= max(1,N). 00053 * 00054 * AF (input) REAL array, dimension (LDAF,N) 00055 * The triangular factor U or L from the Cholesky factorization 00056 * A = U**T*U or A = L*L**T, as computed by SPOTRF. 00057 * 00058 * LDAF (input) INTEGER 00059 * The leading dimension of the array AF. LDAF >= max(1,N). 00060 * 00061 * CMODE (input) INTEGER 00062 * Determines op2(C) in the formula op(A) * op2(C) as follows: 00063 * CMODE = 1 op2(C) = C 00064 * CMODE = 0 op2(C) = I 00065 * CMODE = -1 op2(C) = inv(C) 00066 * 00067 * C (input) REAL array, dimension (N) 00068 * The vector C in the formula op(A) * op2(C). 00069 * 00070 * INFO (output) INTEGER 00071 * = 0: Successful exit. 00072 * i > 0: The ith argument is invalid. 00073 * 00074 * WORK (input) REAL array, dimension (3*N). 00075 * Workspace. 00076 * 00077 * IWORK (input) INTEGER array, dimension (N). 00078 * Workspace. 00079 * 00080 * ===================================================================== 00081 * 00082 * .. Local Scalars .. 00083 INTEGER KASE, I, J 00084 REAL AINVNM, TMP 00085 LOGICAL UP 00086 * .. 00087 * .. Array Arguments .. 00088 INTEGER ISAVE( 3 ) 00089 * .. 00090 * .. External Functions .. 00091 LOGICAL LSAME 00092 INTEGER ISAMAX 00093 EXTERNAL LSAME, ISAMAX 00094 * .. 00095 * .. External Subroutines .. 00096 EXTERNAL SLACN2, SPOTRS, XERBLA 00097 * .. 00098 * .. Intrinsic Functions .. 00099 INTRINSIC ABS, MAX 00100 * .. 00101 * .. Executable Statements .. 00102 * 00103 SLA_PORCOND = 0.0 00104 * 00105 INFO = 0 00106 IF( N.LT.0 ) THEN 00107 INFO = -2 00108 END IF 00109 IF( INFO.NE.0 ) THEN 00110 CALL XERBLA( 'SLA_PORCOND', -INFO ) 00111 RETURN 00112 END IF 00113 00114 IF( N.EQ.0 ) THEN 00115 SLA_PORCOND = 1.0 00116 RETURN 00117 END IF 00118 UP = .FALSE. 00119 IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE. 00120 * 00121 * Compute the equilibration matrix R such that 00122 * inv(R)*A*C has unit 1-norm. 00123 * 00124 IF ( UP ) THEN 00125 DO I = 1, N 00126 TMP = 0.0 00127 IF ( CMODE .EQ. 1 ) THEN 00128 DO J = 1, I 00129 TMP = TMP + ABS( A( J, I ) * C( J ) ) 00130 END DO 00131 DO J = I+1, N 00132 TMP = TMP + ABS( A( I, J ) * C( J ) ) 00133 END DO 00134 ELSE IF ( CMODE .EQ. 0 ) THEN 00135 DO J = 1, I 00136 TMP = TMP + ABS( A( J, I ) ) 00137 END DO 00138 DO J = I+1, N 00139 TMP = TMP + ABS( A( I, J ) ) 00140 END DO 00141 ELSE 00142 DO J = 1, I 00143 TMP = TMP + ABS( A( J ,I ) / C( J ) ) 00144 END DO 00145 DO J = I+1, N 00146 TMP = TMP + ABS( A( I, J ) / C( J ) ) 00147 END DO 00148 END IF 00149 WORK( 2*N+I ) = TMP 00150 END DO 00151 ELSE 00152 DO I = 1, N 00153 TMP = 0.0 00154 IF ( CMODE .EQ. 1 ) THEN 00155 DO J = 1, I 00156 TMP = TMP + ABS( A( I, J ) * C( J ) ) 00157 END DO 00158 DO J = I+1, N 00159 TMP = TMP + ABS( A( J, I ) * C( J ) ) 00160 END DO 00161 ELSE IF ( CMODE .EQ. 0 ) THEN 00162 DO J = 1, I 00163 TMP = TMP + ABS( A( I, J ) ) 00164 END DO 00165 DO J = I+1, N 00166 TMP = TMP + ABS( A( J, I ) ) 00167 END DO 00168 ELSE 00169 DO J = 1, I 00170 TMP = TMP + ABS( A( I, J ) / C( J ) ) 00171 END DO 00172 DO J = I+1, N 00173 TMP = TMP + ABS( A( J, I ) / C( J ) ) 00174 END DO 00175 END IF 00176 WORK( 2*N+I ) = TMP 00177 END DO 00178 ENDIF 00179 * 00180 * Estimate the norm of inv(op(A)). 00181 * 00182 AINVNM = 0.0 00183 00184 KASE = 0 00185 10 CONTINUE 00186 CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE ) 00187 IF( KASE.NE.0 ) THEN 00188 IF( KASE.EQ.2 ) THEN 00189 * 00190 * Multiply by R. 00191 * 00192 DO I = 1, N 00193 WORK( I ) = WORK( I ) * WORK( 2*N+I ) 00194 END DO 00195 00196 IF (UP) THEN 00197 CALL SPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO ) 00198 ELSE 00199 CALL SPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO ) 00200 ENDIF 00201 * 00202 * Multiply by inv(C). 00203 * 00204 IF ( CMODE .EQ. 1 ) THEN 00205 DO I = 1, N 00206 WORK( I ) = WORK( I ) / C( I ) 00207 END DO 00208 ELSE IF ( CMODE .EQ. -1 ) THEN 00209 DO I = 1, N 00210 WORK( I ) = WORK( I ) * C( I ) 00211 END DO 00212 END IF 00213 ELSE 00214 * 00215 * Multiply by inv(C**T). 00216 * 00217 IF ( CMODE .EQ. 1 ) THEN 00218 DO I = 1, N 00219 WORK( I ) = WORK( I ) / C( I ) 00220 END DO 00221 ELSE IF ( CMODE .EQ. -1 ) THEN 00222 DO I = 1, N 00223 WORK( I ) = WORK( I ) * C( I ) 00224 END DO 00225 END IF 00226 00227 IF ( UP ) THEN 00228 CALL SPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO ) 00229 ELSE 00230 CALL SPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO ) 00231 ENDIF 00232 * 00233 * Multiply by R. 00234 * 00235 DO I = 1, N 00236 WORK( I ) = WORK( I ) * WORK( 2*N+I ) 00237 END DO 00238 END IF 00239 GO TO 10 00240 END IF 00241 * 00242 * Compute the estimate of the reciprocal condition number. 00243 * 00244 IF( AINVNM .NE. 0.0 ) 00245 $ SLA_PORCOND = ( 1.0 / AINVNM ) 00246 * 00247 RETURN 00248 * 00249 END