LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE CSYT01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, 00002 $ RWORK, RESID ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 CHARACTER UPLO 00010 INTEGER LDA, LDAFAC, LDC, N 00011 REAL RESID 00012 * .. 00013 * .. Array Arguments .. 00014 INTEGER IPIV( * ) 00015 REAL RWORK( * ) 00016 COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ) 00017 * .. 00018 * 00019 * Purpose 00020 * ======= 00021 * 00022 * CSYT01 reconstructs a complex symmetric indefinite matrix A from its 00023 * block L*D*L' or U*D*U' factorization and computes the residual 00024 * norm( C - A ) / ( N * norm(A) * EPS ), 00025 * where C is the reconstructed matrix, EPS is the machine epsilon, 00026 * L' is the transpose of L, and U' is the transpose of U. 00027 * 00028 * Arguments 00029 * ========== 00030 * 00031 * UPLO (input) CHARACTER*1 00032 * Specifies whether the upper or lower triangular part of the 00033 * complex symmetric matrix A is stored: 00034 * = 'U': Upper triangular 00035 * = 'L': Lower triangular 00036 * 00037 * N (input) INTEGER 00038 * The number of rows and columns of the matrix A. N >= 0. 00039 * 00040 * A (input) COMPLEX array, dimension (LDA,N) 00041 * The original complex symmetric matrix A. 00042 * 00043 * LDA (input) INTEGER 00044 * The leading dimension of the array A. LDA >= max(1,N) 00045 * 00046 * AFAC (input) COMPLEX array, dimension (LDAFAC,N) 00047 * The factored form of the matrix A. AFAC contains the block 00048 * diagonal matrix D and the multipliers used to obtain the 00049 * factor L or U from the block L*D*L' or U*D*U' factorization 00050 * as computed by CSYTRF. 00051 * 00052 * LDAFAC (input) INTEGER 00053 * The leading dimension of the array AFAC. LDAFAC >= max(1,N). 00054 * 00055 * IPIV (input) INTEGER array, dimension (N) 00056 * The pivot indices from CSYTRF. 00057 * 00058 * C (workspace) COMPLEX array, dimension (LDC,N) 00059 * 00060 * LDC (integer) INTEGER 00061 * The leading dimension of the array C. LDC >= max(1,N). 00062 * 00063 * RWORK (workspace) REAL array, dimension (N) 00064 * 00065 * RESID (output) REAL 00066 * If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) 00067 * If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) 00068 * 00069 * ===================================================================== 00070 * 00071 * .. Parameters .. 00072 REAL ZERO, ONE 00073 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) 00074 COMPLEX CZERO, CONE 00075 PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), 00076 $ CONE = ( 1.0E+0, 0.0E+0 ) ) 00077 * .. 00078 * .. Local Scalars .. 00079 INTEGER I, INFO, J 00080 REAL ANORM, EPS 00081 * .. 00082 * .. External Functions .. 00083 LOGICAL LSAME 00084 REAL CLANSY, SLAMCH 00085 EXTERNAL LSAME, CLANSY, SLAMCH 00086 * .. 00087 * .. External Subroutines .. 00088 EXTERNAL CLAVSY, CLASET 00089 * .. 00090 * .. Intrinsic Functions .. 00091 INTRINSIC REAL 00092 * .. 00093 * .. Executable Statements .. 00094 * 00095 * Quick exit if N = 0. 00096 * 00097 IF( N.LE.0 ) THEN 00098 RESID = ZERO 00099 RETURN 00100 END IF 00101 * 00102 * Determine EPS and the norm of A. 00103 * 00104 EPS = SLAMCH( 'Epsilon' ) 00105 ANORM = CLANSY( '1', UPLO, N, A, LDA, RWORK ) 00106 * 00107 * Initialize C to the identity matrix. 00108 * 00109 CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC ) 00110 * 00111 * Call CLAVSY to form the product D * U' (or D * L' ). 00112 * 00113 CALL CLAVSY( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, LDAFAC, 00114 $ IPIV, C, LDC, INFO ) 00115 * 00116 * Call CLAVSY again to multiply by U (or L ). 00117 * 00118 CALL CLAVSY( UPLO, 'No transpose', 'Unit', N, N, AFAC, LDAFAC, 00119 $ IPIV, C, LDC, INFO ) 00120 * 00121 * Compute the difference C - A . 00122 * 00123 IF( LSAME( UPLO, 'U' ) ) THEN 00124 DO 20 J = 1, N 00125 DO 10 I = 1, J 00126 C( I, J ) = C( I, J ) - A( I, J ) 00127 10 CONTINUE 00128 20 CONTINUE 00129 ELSE 00130 DO 40 J = 1, N 00131 DO 30 I = J, N 00132 C( I, J ) = C( I, J ) - A( I, J ) 00133 30 CONTINUE 00134 40 CONTINUE 00135 END IF 00136 * 00137 * Compute norm( C - A ) / ( N * norm(A) * EPS ) 00138 * 00139 RESID = CLANSY( '1', UPLO, N, C, LDC, RWORK ) 00140 * 00141 IF( ANORM.LE.ZERO ) THEN 00142 IF( RESID.NE.ZERO ) 00143 $ RESID = ONE / EPS 00144 ELSE 00145 RESID = ( ( RESID/REAL( N ) )/ANORM ) / EPS 00146 END IF 00147 * 00148 RETURN 00149 * 00150 * End of CSYT01 00151 * 00152 END