LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE ZTPT01( UPLO, DIAG, N, AP, AINVP, RCOND, RWORK, RESID ) 00002 * 00003 * -- LAPACK test routine (version 3.1) -- 00004 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00005 * November 2006 00006 * 00007 * .. Scalar Arguments .. 00008 CHARACTER DIAG, UPLO 00009 INTEGER N 00010 DOUBLE PRECISION RCOND, RESID 00011 * .. 00012 * .. Array Arguments .. 00013 DOUBLE PRECISION RWORK( * ) 00014 COMPLEX*16 AINVP( * ), AP( * ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * ZTPT01 computes the residual for a triangular matrix A times its 00021 * inverse when A is stored in packed format: 00022 * RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ), 00023 * where EPS is the machine epsilon. 00024 * 00025 * Arguments 00026 * ========== 00027 * 00028 * UPLO (input) CHARACTER*1 00029 * Specifies whether the matrix A is upper or lower triangular. 00030 * = 'U': Upper triangular 00031 * = 'L': Lower triangular 00032 * 00033 * DIAG (input) CHARACTER*1 00034 * Specifies whether or not the matrix A is unit triangular. 00035 * = 'N': Non-unit triangular 00036 * = 'U': Unit triangular 00037 * 00038 * N (input) INTEGER 00039 * The order of the matrix A. N >= 0. 00040 * 00041 * AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) 00042 * The original upper or lower triangular matrix A, packed 00043 * columnwise in a linear array. The j-th column of A is stored 00044 * in the array AP as follows: 00045 * if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; 00046 * if UPLO = 'L', 00047 * AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. 00048 * 00049 * AINVP (input) COMPLEX*16 array, dimension (N*(N+1)/2) 00050 * On entry, the (triangular) inverse of the matrix A, packed 00051 * columnwise in a linear array as in AP. 00052 * On exit, the contents of AINVP are destroyed. 00053 * 00054 * RCOND (output) DOUBLE PRECISION 00055 * The reciprocal condition number of A, computed as 00056 * 1/(norm(A) * norm(AINV)). 00057 * 00058 * RWORK (workspace) DOUBLE PRECISION array, dimension (N) 00059 * 00060 * RESID (output) DOUBLE PRECISION 00061 * norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ) 00062 * 00063 * ===================================================================== 00064 * 00065 * .. Parameters .. 00066 DOUBLE PRECISION ZERO, ONE 00067 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 00068 * .. 00069 * .. Local Scalars .. 00070 LOGICAL UNITD 00071 INTEGER J, JC 00072 DOUBLE PRECISION AINVNM, ANORM, EPS 00073 * .. 00074 * .. External Functions .. 00075 LOGICAL LSAME 00076 DOUBLE PRECISION DLAMCH, ZLANTP 00077 EXTERNAL LSAME, DLAMCH, ZLANTP 00078 * .. 00079 * .. External Subroutines .. 00080 EXTERNAL ZTPMV 00081 * .. 00082 * .. Intrinsic Functions .. 00083 INTRINSIC DBLE 00084 * .. 00085 * .. Executable Statements .. 00086 * 00087 * Quick exit if N = 0. 00088 * 00089 IF( N.LE.0 ) THEN 00090 RCOND = ONE 00091 RESID = ZERO 00092 RETURN 00093 END IF 00094 * 00095 * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. 00096 * 00097 EPS = DLAMCH( 'Epsilon' ) 00098 ANORM = ZLANTP( '1', UPLO, DIAG, N, AP, RWORK ) 00099 AINVNM = ZLANTP( '1', UPLO, DIAG, N, AINVP, RWORK ) 00100 IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN 00101 RCOND = ZERO 00102 RESID = ONE / EPS 00103 RETURN 00104 END IF 00105 RCOND = ( ONE / ANORM ) / AINVNM 00106 * 00107 * Compute A * AINV, overwriting AINV. 00108 * 00109 UNITD = LSAME( DIAG, 'U' ) 00110 IF( LSAME( UPLO, 'U' ) ) THEN 00111 JC = 1 00112 DO 10 J = 1, N 00113 IF( UNITD ) 00114 $ AINVP( JC+J-1 ) = ONE 00115 * 00116 * Form the j-th column of A*AINV. 00117 * 00118 CALL ZTPMV( 'Upper', 'No transpose', DIAG, J, AP, 00119 $ AINVP( JC ), 1 ) 00120 * 00121 * Subtract 1 from the diagonal to form A*AINV - I. 00122 * 00123 AINVP( JC+J-1 ) = AINVP( JC+J-1 ) - ONE 00124 JC = JC + J 00125 10 CONTINUE 00126 ELSE 00127 JC = 1 00128 DO 20 J = 1, N 00129 IF( UNITD ) 00130 $ AINVP( JC ) = ONE 00131 * 00132 * Form the j-th column of A*AINV. 00133 * 00134 CALL ZTPMV( 'Lower', 'No transpose', DIAG, N-J+1, AP( JC ), 00135 $ AINVP( JC ), 1 ) 00136 * 00137 * Subtract 1 from the diagonal to form A*AINV - I. 00138 * 00139 AINVP( JC ) = AINVP( JC ) - ONE 00140 JC = JC + N - J + 1 00141 20 CONTINUE 00142 END IF 00143 * 00144 * Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS) 00145 * 00146 RESID = ZLANTP( '1', UPLO, 'Non-unit', N, AINVP, RWORK ) 00147 * 00148 RESID = ( ( RESID*RCOND ) / DBLE( N ) ) / EPS 00149 * 00150 RETURN 00151 * 00152 * End of ZTPT01 00153 * 00154 END