LAPACK 3.3.1 Linear Algebra PACKage

# cpotf2.f

Go to the documentation of this file.
```00001       SUBROUTINE CPOTF2( UPLO, N, A, LDA, INFO )
00002 *
00003 *  -- LAPACK routine (version 3.3.1) --
00004 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00005 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00006 *  -- April 2011                                                      --
00007 *
00008 *     .. Scalar Arguments ..
00009       CHARACTER          UPLO
00010       INTEGER            INFO, LDA, N
00011 *     ..
00012 *     .. Array Arguments ..
00013       COMPLEX            A( LDA, * )
00014 *     ..
00015 *
00016 *  Purpose
00017 *  =======
00018 *
00019 *  CPOTF2 computes the Cholesky factorization of a complex Hermitian
00020 *  positive definite matrix A.
00021 *
00022 *  The factorization has the form
00023 *     A = U**H * U ,  if UPLO = 'U', or
00024 *     A = L  * L**H,  if UPLO = 'L',
00025 *  where U is an upper triangular matrix and L is lower triangular.
00026 *
00027 *  This is the unblocked version of the algorithm, calling Level 2 BLAS.
00028 *
00029 *  Arguments
00030 *  =========
00031 *
00032 *  UPLO    (input) CHARACTER*1
00033 *          Specifies whether the upper or lower triangular part of the
00034 *          Hermitian matrix A is stored.
00035 *          = 'U':  Upper triangular
00036 *          = 'L':  Lower triangular
00037 *
00038 *  N       (input) INTEGER
00039 *          The order of the matrix A.  N >= 0.
00040 *
00041 *  A       (input/output) COMPLEX array, dimension (LDA,N)
00042 *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
00043 *          n by n upper triangular part of A contains the upper
00044 *          triangular part of the matrix A, and the strictly lower
00045 *          triangular part of A is not referenced.  If UPLO = 'L', the
00046 *          leading n by n lower triangular part of A contains the lower
00047 *          triangular part of the matrix A, and the strictly upper
00048 *          triangular part of A is not referenced.
00049 *
00050 *          On exit, if INFO = 0, the factor U or L from the Cholesky
00051 *          factorization A = U**H *U  or A = L*L**H.
00052 *
00053 *  LDA     (input) INTEGER
00054 *          The leading dimension of the array A.  LDA >= max(1,N).
00055 *
00056 *  INFO    (output) INTEGER
00057 *          = 0: successful exit
00058 *          < 0: if INFO = -k, the k-th argument had an illegal value
00059 *          > 0: if INFO = k, the leading minor of order k is not
00060 *               positive definite, and the factorization could not be
00061 *               completed.
00062 *
00063 *  =====================================================================
00064 *
00065 *     .. Parameters ..
00066       REAL               ONE, ZERO
00067       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
00068       COMPLEX            CONE
00069       PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
00070 *     ..
00071 *     .. Local Scalars ..
00072       LOGICAL            UPPER
00073       INTEGER            J
00074       REAL               AJJ
00075 *     ..
00076 *     .. External Functions ..
00077       LOGICAL            LSAME, SISNAN
00078       COMPLEX            CDOTC
00079       EXTERNAL           LSAME, CDOTC, SISNAN
00080 *     ..
00081 *     .. External Subroutines ..
00082       EXTERNAL           CGEMV, CLACGV, CSSCAL, XERBLA
00083 *     ..
00084 *     .. Intrinsic Functions ..
00085       INTRINSIC          MAX, REAL, SQRT
00086 *     ..
00087 *     .. Executable Statements ..
00088 *
00089 *     Test the input parameters.
00090 *
00091       INFO = 0
00092       UPPER = LSAME( UPLO, 'U' )
00093       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
00094          INFO = -1
00095       ELSE IF( N.LT.0 ) THEN
00096          INFO = -2
00097       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
00098          INFO = -4
00099       END IF
00100       IF( INFO.NE.0 ) THEN
00101          CALL XERBLA( 'CPOTF2', -INFO )
00102          RETURN
00103       END IF
00104 *
00105 *     Quick return if possible
00106 *
00107       IF( N.EQ.0 )
00108      \$   RETURN
00109 *
00110       IF( UPPER ) THEN
00111 *
00112 *        Compute the Cholesky factorization A = U**H *U.
00113 *
00114          DO 10 J = 1, N
00115 *
00116 *           Compute U(J,J) and test for non-positive-definiteness.
00117 *
00118             AJJ = REAL( A( J, J ) ) - CDOTC( J-1, A( 1, J ), 1,
00119      \$            A( 1, J ), 1 )
00120             IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
00121                A( J, J ) = AJJ
00122                GO TO 30
00123             END IF
00124             AJJ = SQRT( AJJ )
00125             A( J, J ) = AJJ
00126 *
00127 *           Compute elements J+1:N of row J.
00128 *
00129             IF( J.LT.N ) THEN
00130                CALL CLACGV( J-1, A( 1, J ), 1 )
00131                CALL CGEMV( 'Transpose', J-1, N-J, -CONE, A( 1, J+1 ),
00132      \$                     LDA, A( 1, J ), 1, CONE, A( J, J+1 ), LDA )
00133                CALL CLACGV( J-1, A( 1, J ), 1 )
00134                CALL CSSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
00135             END IF
00136    10    CONTINUE
00137       ELSE
00138 *
00139 *        Compute the Cholesky factorization A = L*L**H.
00140 *
00141          DO 20 J = 1, N
00142 *
00143 *           Compute L(J,J) and test for non-positive-definiteness.
00144 *
00145             AJJ = REAL( A( J, J ) ) - CDOTC( J-1, A( J, 1 ), LDA,
00146      \$            A( J, 1 ), LDA )
00147             IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
00148                A( J, J ) = AJJ
00149                GO TO 30
00150             END IF
00151             AJJ = SQRT( AJJ )
00152             A( J, J ) = AJJ
00153 *
00154 *           Compute elements J+1:N of column J.
00155 *
00156             IF( J.LT.N ) THEN
00157                CALL CLACGV( J-1, A( J, 1 ), LDA )
00158                CALL CGEMV( 'No transpose', N-J, J-1, -CONE, A( J+1, 1 ),
00159      \$                     LDA, A( J, 1 ), LDA, CONE, A( J+1, J ), 1 )
00160                CALL CLACGV( J-1, A( J, 1 ), LDA )
00161                CALL CSSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
00162             END IF
00163    20    CONTINUE
00164       END IF
00165       GO TO 40
00166 *
00167    30 CONTINUE
00168       INFO = J
00169 *
00170    40 CONTINUE
00171       RETURN
00172 *
00173 *     End of CPOTF2
00174 *
00175       END
```