LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE CERRHE( PATH, NUNIT ) 00002 * 00003 * -- LAPACK test routine (version 3.3.1) -- 00004 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00005 * -- April 2011 -- 00006 * 00007 * .. Scalar Arguments .. 00008 CHARACTER*3 PATH 00009 INTEGER NUNIT 00010 * .. 00011 * 00012 * Purpose 00013 * ======= 00014 * 00015 * CERRHE tests the error exits for the COMPLEX routines 00016 * for Hermitian indefinite matrices. 00017 * 00018 * Arguments 00019 * ========= 00020 * 00021 * PATH (input) CHARACTER*3 00022 * The LAPACK path name for the routines to be tested. 00023 * 00024 * NUNIT (input) INTEGER 00025 * The unit number for output. 00026 * 00027 * ===================================================================== 00028 * 00029 * 00030 * .. Parameters .. 00031 INTEGER NMAX 00032 PARAMETER ( NMAX = 4 ) 00033 * .. 00034 * .. Local Scalars .. 00035 CHARACTER*2 C2 00036 INTEGER I, INFO, J 00037 REAL ANRM, RCOND 00038 * .. 00039 * .. Local Arrays .. 00040 INTEGER IP( NMAX ) 00041 REAL R( NMAX ), R1( NMAX ), R2( NMAX ) 00042 COMPLEX A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ), 00043 $ W( 2*NMAX ), X( NMAX ) 00044 * .. 00045 * .. External Functions .. 00046 LOGICAL LSAMEN 00047 EXTERNAL LSAMEN 00048 * .. 00049 * .. External Subroutines .. 00050 EXTERNAL ALAESM, CHECON, CHERFS, CHETF2, CHETRF, CHETRI, 00051 $ CHETRI2, CHETRS, CHKXER, CHPCON, CHPRFS, 00052 $ CHPTRF, CHPTRI, CHPTRS 00053 * .. 00054 * .. Scalars in Common .. 00055 LOGICAL LERR, OK 00056 CHARACTER*32 SRNAMT 00057 INTEGER INFOT, NOUT 00058 * .. 00059 * .. Common blocks .. 00060 COMMON / INFOC / INFOT, NOUT, OK, LERR 00061 COMMON / SRNAMC / SRNAMT 00062 * .. 00063 * .. Intrinsic Functions .. 00064 INTRINSIC CMPLX, REAL 00065 * .. 00066 * .. Executable Statements .. 00067 * 00068 NOUT = NUNIT 00069 WRITE( NOUT, FMT = * ) 00070 C2 = PATH( 2: 3 ) 00071 * 00072 * Set the variables to innocuous values. 00073 * 00074 DO 20 J = 1, NMAX 00075 DO 10 I = 1, NMAX 00076 A( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) ) 00077 AF( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) ) 00078 10 CONTINUE 00079 B( J ) = 0. 00080 R1( J ) = 0. 00081 R2( J ) = 0. 00082 W( J ) = 0. 00083 X( J ) = 0. 00084 IP( J ) = J 00085 20 CONTINUE 00086 ANRM = 1.0 00087 OK = .TRUE. 00088 * 00089 * Test error exits of the routines that use the diagonal pivoting 00090 * factorization of a Hermitian indefinite matrix. 00091 * 00092 IF( LSAMEN( 2, C2, 'HE' ) ) THEN 00093 * 00094 * CHETRF 00095 * 00096 SRNAMT = 'CHETRF' 00097 INFOT = 1 00098 CALL CHETRF( '/', 0, A, 1, IP, W, 1, INFO ) 00099 CALL CHKXER( 'CHETRF', INFOT, NOUT, LERR, OK ) 00100 INFOT = 2 00101 CALL CHETRF( 'U', -1, A, 1, IP, W, 1, INFO ) 00102 CALL CHKXER( 'CHETRF', INFOT, NOUT, LERR, OK ) 00103 INFOT = 4 00104 CALL CHETRF( 'U', 2, A, 1, IP, W, 4, INFO ) 00105 CALL CHKXER( 'CHETRF', INFOT, NOUT, LERR, OK ) 00106 * 00107 * CHETF2 00108 * 00109 SRNAMT = 'CHETF2' 00110 INFOT = 1 00111 CALL CHETF2( '/', 0, A, 1, IP, INFO ) 00112 CALL CHKXER( 'CHETF2', INFOT, NOUT, LERR, OK ) 00113 INFOT = 2 00114 CALL CHETF2( 'U', -1, A, 1, IP, INFO ) 00115 CALL CHKXER( 'CHETF2', INFOT, NOUT, LERR, OK ) 00116 INFOT = 4 00117 CALL CHETF2( 'U', 2, A, 1, IP, INFO ) 00118 CALL CHKXER( 'CHETF2', INFOT, NOUT, LERR, OK ) 00119 * 00120 * CHETRI 00121 * 00122 SRNAMT = 'CHETRI' 00123 INFOT = 1 00124 CALL CHETRI( '/', 0, A, 1, IP, W, INFO ) 00125 CALL CHKXER( 'CHETRI', INFOT, NOUT, LERR, OK ) 00126 INFOT = 2 00127 CALL CHETRI( 'U', -1, A, 1, IP, W, INFO ) 00128 CALL CHKXER( 'CHETRI', INFOT, NOUT, LERR, OK ) 00129 INFOT = 4 00130 CALL CHETRI( 'U', 2, A, 1, IP, W, INFO ) 00131 CALL CHKXER( 'CHETRI', INFOT, NOUT, LERR, OK ) 00132 * 00133 * CHETRI2 00134 * 00135 SRNAMT = 'CHETRI2' 00136 INFOT = 1 00137 CALL CHETRI2( '/', 0, A, 1, IP, W, 1, INFO ) 00138 CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK ) 00139 INFOT = 2 00140 CALL CHETRI2( 'U', -1, A, 1, IP, W, 1, INFO ) 00141 CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK ) 00142 INFOT = 4 00143 CALL CHETRI2( 'U', 2, A, 1, IP, W, 1, INFO ) 00144 CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK ) 00145 * 00146 * CHETRS 00147 * 00148 SRNAMT = 'CHETRS' 00149 INFOT = 1 00150 CALL CHETRS( '/', 0, 0, A, 1, IP, B, 1, INFO ) 00151 CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK ) 00152 INFOT = 2 00153 CALL CHETRS( 'U', -1, 0, A, 1, IP, B, 1, INFO ) 00154 CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK ) 00155 INFOT = 3 00156 CALL CHETRS( 'U', 0, -1, A, 1, IP, B, 1, INFO ) 00157 CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK ) 00158 INFOT = 5 00159 CALL CHETRS( 'U', 2, 1, A, 1, IP, B, 2, INFO ) 00160 CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK ) 00161 INFOT = 8 00162 CALL CHETRS( 'U', 2, 1, A, 2, IP, B, 1, INFO ) 00163 CALL CHKXER( 'CHETRS', INFOT, NOUT, LERR, OK ) 00164 * 00165 * CHERFS 00166 * 00167 SRNAMT = 'CHERFS' 00168 INFOT = 1 00169 CALL CHERFS( '/', 0, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, W, 00170 $ R, INFO ) 00171 CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK ) 00172 INFOT = 2 00173 CALL CHERFS( 'U', -1, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, 00174 $ W, R, INFO ) 00175 CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK ) 00176 INFOT = 3 00177 CALL CHERFS( 'U', 0, -1, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, 00178 $ W, R, INFO ) 00179 CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK ) 00180 INFOT = 5 00181 CALL CHERFS( 'U', 2, 1, A, 1, AF, 2, IP, B, 2, X, 2, R1, R2, W, 00182 $ R, INFO ) 00183 CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK ) 00184 INFOT = 7 00185 CALL CHERFS( 'U', 2, 1, A, 2, AF, 1, IP, B, 2, X, 2, R1, R2, W, 00186 $ R, INFO ) 00187 CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK ) 00188 INFOT = 10 00189 CALL CHERFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 1, X, 2, R1, R2, W, 00190 $ R, INFO ) 00191 CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK ) 00192 INFOT = 12 00193 CALL CHERFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 2, X, 1, R1, R2, W, 00194 $ R, INFO ) 00195 CALL CHKXER( 'CHERFS', INFOT, NOUT, LERR, OK ) 00196 * 00197 * CHECON 00198 * 00199 SRNAMT = 'CHECON' 00200 INFOT = 1 00201 CALL CHECON( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO ) 00202 CALL CHKXER( 'CHECON', INFOT, NOUT, LERR, OK ) 00203 INFOT = 2 00204 CALL CHECON( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO ) 00205 CALL CHKXER( 'CHECON', INFOT, NOUT, LERR, OK ) 00206 INFOT = 4 00207 CALL CHECON( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO ) 00208 CALL CHKXER( 'CHECON', INFOT, NOUT, LERR, OK ) 00209 INFOT = 6 00210 CALL CHECON( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO ) 00211 CALL CHKXER( 'CHECON', INFOT, NOUT, LERR, OK ) 00212 * 00213 * Test error exits of the routines that use the diagonal pivoting 00214 * factorization of a Hermitian indefinite packed matrix. 00215 * 00216 ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN 00217 * 00218 * CHPTRF 00219 * 00220 SRNAMT = 'CHPTRF' 00221 INFOT = 1 00222 CALL CHPTRF( '/', 0, A, IP, INFO ) 00223 CALL CHKXER( 'CHPTRF', INFOT, NOUT, LERR, OK ) 00224 INFOT = 2 00225 CALL CHPTRF( 'U', -1, A, IP, INFO ) 00226 CALL CHKXER( 'CHPTRF', INFOT, NOUT, LERR, OK ) 00227 * 00228 * CHPTRI 00229 * 00230 SRNAMT = 'CHPTRI' 00231 INFOT = 1 00232 CALL CHPTRI( '/', 0, A, IP, W, INFO ) 00233 CALL CHKXER( 'CHPTRI', INFOT, NOUT, LERR, OK ) 00234 INFOT = 2 00235 CALL CHPTRI( 'U', -1, A, IP, W, INFO ) 00236 CALL CHKXER( 'CHPTRI', INFOT, NOUT, LERR, OK ) 00237 * 00238 * CHPTRS 00239 * 00240 SRNAMT = 'CHPTRS' 00241 INFOT = 1 00242 CALL CHPTRS( '/', 0, 0, A, IP, B, 1, INFO ) 00243 CALL CHKXER( 'CHPTRS', INFOT, NOUT, LERR, OK ) 00244 INFOT = 2 00245 CALL CHPTRS( 'U', -1, 0, A, IP, B, 1, INFO ) 00246 CALL CHKXER( 'CHPTRS', INFOT, NOUT, LERR, OK ) 00247 INFOT = 3 00248 CALL CHPTRS( 'U', 0, -1, A, IP, B, 1, INFO ) 00249 CALL CHKXER( 'CHPTRS', INFOT, NOUT, LERR, OK ) 00250 INFOT = 7 00251 CALL CHPTRS( 'U', 2, 1, A, IP, B, 1, INFO ) 00252 CALL CHKXER( 'CHPTRS', INFOT, NOUT, LERR, OK ) 00253 * 00254 * CHPRFS 00255 * 00256 SRNAMT = 'CHPRFS' 00257 INFOT = 1 00258 CALL CHPRFS( '/', 0, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R, 00259 $ INFO ) 00260 CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK ) 00261 INFOT = 2 00262 CALL CHPRFS( 'U', -1, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R, 00263 $ INFO ) 00264 CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK ) 00265 INFOT = 3 00266 CALL CHPRFS( 'U', 0, -1, A, AF, IP, B, 1, X, 1, R1, R2, W, R, 00267 $ INFO ) 00268 CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK ) 00269 INFOT = 8 00270 CALL CHPRFS( 'U', 2, 1, A, AF, IP, B, 1, X, 2, R1, R2, W, R, 00271 $ INFO ) 00272 CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK ) 00273 INFOT = 10 00274 CALL CHPRFS( 'U', 2, 1, A, AF, IP, B, 2, X, 1, R1, R2, W, R, 00275 $ INFO ) 00276 CALL CHKXER( 'CHPRFS', INFOT, NOUT, LERR, OK ) 00277 * 00278 * CHPCON 00279 * 00280 SRNAMT = 'CHPCON' 00281 INFOT = 1 00282 CALL CHPCON( '/', 0, A, IP, ANRM, RCOND, W, INFO ) 00283 CALL CHKXER( 'CHPCON', INFOT, NOUT, LERR, OK ) 00284 INFOT = 2 00285 CALL CHPCON( 'U', -1, A, IP, ANRM, RCOND, W, INFO ) 00286 CALL CHKXER( 'CHPCON', INFOT, NOUT, LERR, OK ) 00287 INFOT = 5 00288 CALL CHPCON( 'U', 1, A, IP, -ANRM, RCOND, W, INFO ) 00289 CALL CHKXER( 'CHPCON', INFOT, NOUT, LERR, OK ) 00290 END IF 00291 * 00292 * Print a summary line. 00293 * 00294 CALL ALAESM( PATH, OK, NOUT ) 00295 * 00296 RETURN 00297 * 00298 * End of CERRHE 00299 * 00300 END