LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE ZQLT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK, 00002 $ RWORK, RESULT ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 INTEGER LDA, LWORK, M, N 00010 * .. 00011 * .. Array Arguments .. 00012 DOUBLE PRECISION RESULT( * ), RWORK( * ) 00013 COMPLEX*16 A( LDA, * ), AF( LDA, * ), L( LDA, * ), 00014 $ Q( LDA, * ), TAU( * ), WORK( LWORK ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * ZQLT01 tests ZGEQLF, which computes the QL factorization of an m-by-n 00021 * matrix A, and partially tests ZUNGQL which forms the m-by-m 00022 * orthogonal matrix Q. 00023 * 00024 * ZQLT01 compares L with Q'*A, and checks that Q is orthogonal. 00025 * 00026 * Arguments 00027 * ========= 00028 * 00029 * M (input) INTEGER 00030 * The number of rows of the matrix A. M >= 0. 00031 * 00032 * N (input) INTEGER 00033 * The number of columns of the matrix A. N >= 0. 00034 * 00035 * A (input) COMPLEX*16 array, dimension (LDA,N) 00036 * The m-by-n matrix A. 00037 * 00038 * AF (output) COMPLEX*16 array, dimension (LDA,N) 00039 * Details of the QL factorization of A, as returned by ZGEQLF. 00040 * See ZGEQLF for further details. 00041 * 00042 * Q (output) COMPLEX*16 array, dimension (LDA,M) 00043 * The m-by-m orthogonal matrix Q. 00044 * 00045 * L (workspace) COMPLEX*16 array, dimension (LDA,max(M,N)) 00046 * 00047 * LDA (input) INTEGER 00048 * The leading dimension of the arrays A, AF, Q and R. 00049 * LDA >= max(M,N). 00050 * 00051 * TAU (output) COMPLEX*16 array, dimension (min(M,N)) 00052 * The scalar factors of the elementary reflectors, as returned 00053 * by ZGEQLF. 00054 * 00055 * WORK (workspace) COMPLEX*16 array, dimension (LWORK) 00056 * 00057 * LWORK (input) INTEGER 00058 * The dimension of the array WORK. 00059 * 00060 * RWORK (workspace) DOUBLE PRECISION array, dimension (M) 00061 * 00062 * RESULT (output) DOUBLE PRECISION array, dimension (2) 00063 * The test ratios: 00064 * RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS ) 00065 * RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) 00066 * 00067 * ===================================================================== 00068 * 00069 * .. Parameters .. 00070 DOUBLE PRECISION ZERO, ONE 00071 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 00072 COMPLEX*16 ROGUE 00073 PARAMETER ( ROGUE = ( -1.0D+10, -1.0D+10 ) ) 00074 * .. 00075 * .. Local Scalars .. 00076 INTEGER INFO, MINMN 00077 DOUBLE PRECISION ANORM, EPS, RESID 00078 * .. 00079 * .. External Functions .. 00080 DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY 00081 EXTERNAL DLAMCH, ZLANGE, ZLANSY 00082 * .. 00083 * .. External Subroutines .. 00084 EXTERNAL ZGEMM, ZGEQLF, ZHERK, ZLACPY, ZLASET, ZUNGQL 00085 * .. 00086 * .. Intrinsic Functions .. 00087 INTRINSIC DBLE, DCMPLX, MAX, MIN 00088 * .. 00089 * .. Scalars in Common .. 00090 CHARACTER*32 SRNAMT 00091 * .. 00092 * .. Common blocks .. 00093 COMMON / SRNAMC / SRNAMT 00094 * .. 00095 * .. Executable Statements .. 00096 * 00097 MINMN = MIN( M, N ) 00098 EPS = DLAMCH( 'Epsilon' ) 00099 * 00100 * Copy the matrix A to the array AF. 00101 * 00102 CALL ZLACPY( 'Full', M, N, A, LDA, AF, LDA ) 00103 * 00104 * Factorize the matrix A in the array AF. 00105 * 00106 SRNAMT = 'ZGEQLF' 00107 CALL ZGEQLF( M, N, AF, LDA, TAU, WORK, LWORK, INFO ) 00108 * 00109 * Copy details of Q 00110 * 00111 CALL ZLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA ) 00112 IF( M.GE.N ) THEN 00113 IF( N.LT.M .AND. N.GT.0 ) 00114 $ CALL ZLACPY( 'Full', M-N, N, AF, LDA, Q( 1, M-N+1 ), LDA ) 00115 IF( N.GT.1 ) 00116 $ CALL ZLACPY( 'Upper', N-1, N-1, AF( M-N+1, 2 ), LDA, 00117 $ Q( M-N+1, M-N+2 ), LDA ) 00118 ELSE 00119 IF( M.GT.1 ) 00120 $ CALL ZLACPY( 'Upper', M-1, M-1, AF( 1, N-M+2 ), LDA, 00121 $ Q( 1, 2 ), LDA ) 00122 END IF 00123 * 00124 * Generate the m-by-m matrix Q 00125 * 00126 SRNAMT = 'ZUNGQL' 00127 CALL ZUNGQL( M, M, MINMN, Q, LDA, TAU, WORK, LWORK, INFO ) 00128 * 00129 * Copy L 00130 * 00131 CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ), DCMPLX( ZERO ), L, 00132 $ LDA ) 00133 IF( M.GE.N ) THEN 00134 IF( N.GT.0 ) 00135 $ CALL ZLACPY( 'Lower', N, N, AF( M-N+1, 1 ), LDA, 00136 $ L( M-N+1, 1 ), LDA ) 00137 ELSE 00138 IF( N.GT.M .AND. M.GT.0 ) 00139 $ CALL ZLACPY( 'Full', M, N-M, AF, LDA, L, LDA ) 00140 IF( M.GT.0 ) 00141 $ CALL ZLACPY( 'Lower', M, M, AF( 1, N-M+1 ), LDA, 00142 $ L( 1, N-M+1 ), LDA ) 00143 END IF 00144 * 00145 * Compute L - Q'*A 00146 * 00147 CALL ZGEMM( 'Conjugate transpose', 'No transpose', M, N, M, 00148 $ DCMPLX( -ONE ), Q, LDA, A, LDA, DCMPLX( ONE ), L, 00149 $ LDA ) 00150 * 00151 * Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) . 00152 * 00153 ANORM = ZLANGE( '1', M, N, A, LDA, RWORK ) 00154 RESID = ZLANGE( '1', M, N, L, LDA, RWORK ) 00155 IF( ANORM.GT.ZERO ) THEN 00156 RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M ) ) ) / ANORM ) / EPS 00157 ELSE 00158 RESULT( 1 ) = ZERO 00159 END IF 00160 * 00161 * Compute I - Q'*Q 00162 * 00163 CALL ZLASET( 'Full', M, M, DCMPLX( ZERO ), DCMPLX( ONE ), L, LDA ) 00164 CALL ZHERK( 'Upper', 'Conjugate transpose', M, M, -ONE, Q, LDA, 00165 $ ONE, L, LDA ) 00166 * 00167 * Compute norm( I - Q'*Q ) / ( M * EPS ) . 00168 * 00169 RESID = ZLANSY( '1', 'Upper', M, L, LDA, RWORK ) 00170 * 00171 RESULT( 2 ) = ( RESID / DBLE( MAX( 1, M ) ) ) / EPS 00172 * 00173 RETURN 00174 * 00175 * End of ZQLT01 00176 * 00177 END