LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE DLACN2( N, V, X, ISGN, EST, KASE, ISAVE ) 00002 * 00003 * -- LAPACK auxiliary routine (version 3.2) -- 00004 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00005 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 INTEGER KASE, N 00010 DOUBLE PRECISION EST 00011 * .. 00012 * .. Array Arguments .. 00013 INTEGER ISGN( * ), ISAVE( 3 ) 00014 DOUBLE PRECISION V( * ), X( * ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * DLACN2 estimates the 1-norm of a square, real matrix A. 00021 * Reverse communication is used for evaluating matrix-vector products. 00022 * 00023 * Arguments 00024 * ========= 00025 * 00026 * N (input) INTEGER 00027 * The order of the matrix. N >= 1. 00028 * 00029 * V (workspace) DOUBLE PRECISION array, dimension (N) 00030 * On the final return, V = A*W, where EST = norm(V)/norm(W) 00031 * (W is not returned). 00032 * 00033 * X (input/output) DOUBLE PRECISION array, dimension (N) 00034 * On an intermediate return, X should be overwritten by 00035 * A * X, if KASE=1, 00036 * A**T * X, if KASE=2, 00037 * and DLACN2 must be re-called with all the other parameters 00038 * unchanged. 00039 * 00040 * ISGN (workspace) INTEGER array, dimension (N) 00041 * 00042 * EST (input/output) DOUBLE PRECISION 00043 * On entry with KASE = 1 or 2 and ISAVE(1) = 3, EST should be 00044 * unchanged from the previous call to DLACN2. 00045 * On exit, EST is an estimate (a lower bound) for norm(A). 00046 * 00047 * KASE (input/output) INTEGER 00048 * On the initial call to DLACN2, KASE should be 0. 00049 * On an intermediate return, KASE will be 1 or 2, indicating 00050 * whether X should be overwritten by A * X or A**T * X. 00051 * On the final return from DLACN2, KASE will again be 0. 00052 * 00053 * ISAVE (input/output) INTEGER array, dimension (3) 00054 * ISAVE is used to save variables between calls to DLACN2 00055 * 00056 * Further Details 00057 * ======= ======= 00058 * 00059 * Contributed by Nick Higham, University of Manchester. 00060 * Originally named SONEST, dated March 16, 1988. 00061 * 00062 * Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of 00063 * a real or complex matrix, with applications to condition estimation", 00064 * ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988. 00065 * 00066 * This is a thread safe version of DLACON, which uses the array ISAVE 00067 * in place of a SAVE statement, as follows: 00068 * 00069 * DLACON DLACN2 00070 * JUMP ISAVE(1) 00071 * J ISAVE(2) 00072 * ITER ISAVE(3) 00073 * 00074 * ===================================================================== 00075 * 00076 * .. Parameters .. 00077 INTEGER ITMAX 00078 PARAMETER ( ITMAX = 5 ) 00079 DOUBLE PRECISION ZERO, ONE, TWO 00080 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 ) 00081 * .. 00082 * .. Local Scalars .. 00083 INTEGER I, JLAST 00084 DOUBLE PRECISION ALTSGN, ESTOLD, TEMP 00085 * .. 00086 * .. External Functions .. 00087 INTEGER IDAMAX 00088 DOUBLE PRECISION DASUM 00089 EXTERNAL IDAMAX, DASUM 00090 * .. 00091 * .. External Subroutines .. 00092 EXTERNAL DCOPY 00093 * .. 00094 * .. Intrinsic Functions .. 00095 INTRINSIC ABS, DBLE, NINT, SIGN 00096 * .. 00097 * .. Executable Statements .. 00098 * 00099 IF( KASE.EQ.0 ) THEN 00100 DO 10 I = 1, N 00101 X( I ) = ONE / DBLE( N ) 00102 10 CONTINUE 00103 KASE = 1 00104 ISAVE( 1 ) = 1 00105 RETURN 00106 END IF 00107 * 00108 GO TO ( 20, 40, 70, 110, 140 )ISAVE( 1 ) 00109 * 00110 * ................ ENTRY (ISAVE( 1 ) = 1) 00111 * FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X. 00112 * 00113 20 CONTINUE 00114 IF( N.EQ.1 ) THEN 00115 V( 1 ) = X( 1 ) 00116 EST = ABS( V( 1 ) ) 00117 * ... QUIT 00118 GO TO 150 00119 END IF 00120 EST = DASUM( N, X, 1 ) 00121 * 00122 DO 30 I = 1, N 00123 X( I ) = SIGN( ONE, X( I ) ) 00124 ISGN( I ) = NINT( X( I ) ) 00125 30 CONTINUE 00126 KASE = 2 00127 ISAVE( 1 ) = 2 00128 RETURN 00129 * 00130 * ................ ENTRY (ISAVE( 1 ) = 2) 00131 * FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X. 00132 * 00133 40 CONTINUE 00134 ISAVE( 2 ) = IDAMAX( N, X, 1 ) 00135 ISAVE( 3 ) = 2 00136 * 00137 * MAIN LOOP - ITERATIONS 2,3,...,ITMAX. 00138 * 00139 50 CONTINUE 00140 DO 60 I = 1, N 00141 X( I ) = ZERO 00142 60 CONTINUE 00143 X( ISAVE( 2 ) ) = ONE 00144 KASE = 1 00145 ISAVE( 1 ) = 3 00146 RETURN 00147 * 00148 * ................ ENTRY (ISAVE( 1 ) = 3) 00149 * X HAS BEEN OVERWRITTEN BY A*X. 00150 * 00151 70 CONTINUE 00152 CALL DCOPY( N, X, 1, V, 1 ) 00153 ESTOLD = EST 00154 EST = DASUM( N, V, 1 ) 00155 DO 80 I = 1, N 00156 IF( NINT( SIGN( ONE, X( I ) ) ).NE.ISGN( I ) ) 00157 $ GO TO 90 00158 80 CONTINUE 00159 * REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED. 00160 GO TO 120 00161 * 00162 90 CONTINUE 00163 * TEST FOR CYCLING. 00164 IF( EST.LE.ESTOLD ) 00165 $ GO TO 120 00166 * 00167 DO 100 I = 1, N 00168 X( I ) = SIGN( ONE, X( I ) ) 00169 ISGN( I ) = NINT( X( I ) ) 00170 100 CONTINUE 00171 KASE = 2 00172 ISAVE( 1 ) = 4 00173 RETURN 00174 * 00175 * ................ ENTRY (ISAVE( 1 ) = 4) 00176 * X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X. 00177 * 00178 110 CONTINUE 00179 JLAST = ISAVE( 2 ) 00180 ISAVE( 2 ) = IDAMAX( N, X, 1 ) 00181 IF( ( X( JLAST ).NE.ABS( X( ISAVE( 2 ) ) ) ) .AND. 00182 $ ( ISAVE( 3 ).LT.ITMAX ) ) THEN 00183 ISAVE( 3 ) = ISAVE( 3 ) + 1 00184 GO TO 50 00185 END IF 00186 * 00187 * ITERATION COMPLETE. FINAL STAGE. 00188 * 00189 120 CONTINUE 00190 ALTSGN = ONE 00191 DO 130 I = 1, N 00192 X( I ) = ALTSGN*( ONE+DBLE( I-1 ) / DBLE( N-1 ) ) 00193 ALTSGN = -ALTSGN 00194 130 CONTINUE 00195 KASE = 1 00196 ISAVE( 1 ) = 5 00197 RETURN 00198 * 00199 * ................ ENTRY (ISAVE( 1 ) = 5) 00200 * X HAS BEEN OVERWRITTEN BY A*X. 00201 * 00202 140 CONTINUE 00203 TEMP = TWO*( DASUM( N, X, 1 ) / DBLE( 3*N ) ) 00204 IF( TEMP.GT.EST ) THEN 00205 CALL DCOPY( N, X, 1, V, 1 ) 00206 EST = TEMP 00207 END IF 00208 * 00209 150 CONTINUE 00210 KASE = 0 00211 RETURN 00212 * 00213 * End of DLACN2 00214 * 00215 END