LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE DTPTTF( TRANSR, UPLO, N, AP, ARF, INFO ) 00002 * 00003 * -- LAPACK routine (version 3.3.1) -- 00004 * 00005 * -- Contributed by Fred Gustavson of the IBM Watson Research Center -- 00006 * -- April 2011 -- 00007 * 00008 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00009 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00010 * 00011 * .. 00012 * .. Scalar Arguments .. 00013 CHARACTER TRANSR, UPLO 00014 INTEGER INFO, N 00015 * .. 00016 * .. Array Arguments .. 00017 DOUBLE PRECISION AP( 0: * ), ARF( 0: * ) 00018 * 00019 * Purpose 00020 * ======= 00021 * 00022 * DTPTTF copies a triangular matrix A from standard packed format (TP) 00023 * to rectangular full packed format (TF). 00024 * 00025 * Arguments 00026 * ========= 00027 * 00028 * TRANSR (input) CHARACTER*1 00029 * = 'N': ARF in Normal format is wanted; 00030 * = 'T': ARF in Conjugate-transpose format is wanted. 00031 * 00032 * UPLO (input) CHARACTER*1 00033 * = 'U': A is upper triangular; 00034 * = 'L': A is lower triangular. 00035 * 00036 * N (input) INTEGER 00037 * The order of the matrix A. N >= 0. 00038 * 00039 * AP (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ), 00040 * On entry, the upper or lower triangular matrix A, packed 00041 * columnwise in a linear array. The j-th column of A is stored 00042 * in the array AP as follows: 00043 * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; 00044 * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. 00045 * 00046 * ARF (output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ), 00047 * On exit, the upper or lower triangular matrix A stored in 00048 * RFP format. For a further discussion see Notes below. 00049 * 00050 * INFO (output) INTEGER 00051 * = 0: successful exit 00052 * < 0: if INFO = -i, the i-th argument had an illegal value 00053 * 00054 * Further Details 00055 * =============== 00056 * 00057 * We first consider Rectangular Full Packed (RFP) Format when N is 00058 * even. We give an example where N = 6. 00059 * 00060 * AP is Upper AP is Lower 00061 * 00062 * 00 01 02 03 04 05 00 00063 * 11 12 13 14 15 10 11 00064 * 22 23 24 25 20 21 22 00065 * 33 34 35 30 31 32 33 00066 * 44 45 40 41 42 43 44 00067 * 55 50 51 52 53 54 55 00068 * 00069 * 00070 * Let TRANSR = 'N'. RFP holds AP as follows: 00071 * For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last 00072 * three columns of AP upper. The lower triangle A(4:6,0:2) consists of 00073 * the transpose of the first three columns of AP upper. 00074 * For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first 00075 * three columns of AP lower. The upper triangle A(0:2,0:2) consists of 00076 * the transpose of the last three columns of AP lower. 00077 * This covers the case N even and TRANSR = 'N'. 00078 * 00079 * RFP A RFP A 00080 * 00081 * 03 04 05 33 43 53 00082 * 13 14 15 00 44 54 00083 * 23 24 25 10 11 55 00084 * 33 34 35 20 21 22 00085 * 00 44 45 30 31 32 00086 * 01 11 55 40 41 42 00087 * 02 12 22 50 51 52 00088 * 00089 * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the 00090 * transpose of RFP A above. One therefore gets: 00091 * 00092 * 00093 * RFP A RFP A 00094 * 00095 * 03 13 23 33 00 01 02 33 00 10 20 30 40 50 00096 * 04 14 24 34 44 11 12 43 44 11 21 31 41 51 00097 * 05 15 25 35 45 55 22 53 54 55 22 32 42 52 00098 * 00099 * 00100 * We then consider Rectangular Full Packed (RFP) Format when N is 00101 * odd. We give an example where N = 5. 00102 * 00103 * AP is Upper AP is Lower 00104 * 00105 * 00 01 02 03 04 00 00106 * 11 12 13 14 10 11 00107 * 22 23 24 20 21 22 00108 * 33 34 30 31 32 33 00109 * 44 40 41 42 43 44 00110 * 00111 * 00112 * Let TRANSR = 'N'. RFP holds AP as follows: 00113 * For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last 00114 * three columns of AP upper. The lower triangle A(3:4,0:1) consists of 00115 * the transpose of the first two columns of AP upper. 00116 * For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first 00117 * three columns of AP lower. The upper triangle A(0:1,1:2) consists of 00118 * the transpose of the last two columns of AP lower. 00119 * This covers the case N odd and TRANSR = 'N'. 00120 * 00121 * RFP A RFP A 00122 * 00123 * 02 03 04 00 33 43 00124 * 12 13 14 10 11 44 00125 * 22 23 24 20 21 22 00126 * 00 33 34 30 31 32 00127 * 01 11 44 40 41 42 00128 * 00129 * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the 00130 * transpose of RFP A above. One therefore gets: 00131 * 00132 * RFP A RFP A 00133 * 00134 * 02 12 22 00 01 00 10 20 30 40 50 00135 * 03 13 23 33 11 33 11 21 31 41 51 00136 * 04 14 24 34 44 43 44 22 32 42 52 00137 * 00138 * ===================================================================== 00139 * 00140 * .. Parameters .. 00141 * .. 00142 * .. Local Scalars .. 00143 LOGICAL LOWER, NISODD, NORMALTRANSR 00144 INTEGER N1, N2, K, NT 00145 INTEGER I, J, IJ 00146 INTEGER IJP, JP, LDA, JS 00147 * .. 00148 * .. External Functions .. 00149 LOGICAL LSAME 00150 EXTERNAL LSAME 00151 * .. 00152 * .. External Subroutines .. 00153 EXTERNAL XERBLA 00154 * .. 00155 * .. Intrinsic Functions .. 00156 INTRINSIC MOD 00157 * .. 00158 * .. Executable Statements .. 00159 * 00160 * Test the input parameters. 00161 * 00162 INFO = 0 00163 NORMALTRANSR = LSAME( TRANSR, 'N' ) 00164 LOWER = LSAME( UPLO, 'L' ) 00165 IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN 00166 INFO = -1 00167 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN 00168 INFO = -2 00169 ELSE IF( N.LT.0 ) THEN 00170 INFO = -3 00171 END IF 00172 IF( INFO.NE.0 ) THEN 00173 CALL XERBLA( 'DTPTTF', -INFO ) 00174 RETURN 00175 END IF 00176 * 00177 * Quick return if possible 00178 * 00179 IF( N.EQ.0 ) 00180 $ RETURN 00181 * 00182 IF( N.EQ.1 ) THEN 00183 IF( NORMALTRANSR ) THEN 00184 ARF( 0 ) = AP( 0 ) 00185 ELSE 00186 ARF( 0 ) = AP( 0 ) 00187 END IF 00188 RETURN 00189 END IF 00190 * 00191 * Size of array ARF(0:NT-1) 00192 * 00193 NT = N*( N+1 ) / 2 00194 * 00195 * Set N1 and N2 depending on LOWER 00196 * 00197 IF( LOWER ) THEN 00198 N2 = N / 2 00199 N1 = N - N2 00200 ELSE 00201 N1 = N / 2 00202 N2 = N - N1 00203 END IF 00204 * 00205 * If N is odd, set NISODD = .TRUE. 00206 * If N is even, set K = N/2 and NISODD = .FALSE. 00207 * 00208 * set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe) 00209 * where noe = 0 if n is even, noe = 1 if n is odd 00210 * 00211 IF( MOD( N, 2 ).EQ.0 ) THEN 00212 K = N / 2 00213 NISODD = .FALSE. 00214 LDA = N + 1 00215 ELSE 00216 NISODD = .TRUE. 00217 LDA = N 00218 END IF 00219 * 00220 * ARF^C has lda rows and n+1-noe cols 00221 * 00222 IF( .NOT.NORMALTRANSR ) 00223 $ LDA = ( N+1 ) / 2 00224 * 00225 * start execution: there are eight cases 00226 * 00227 IF( NISODD ) THEN 00228 * 00229 * N is odd 00230 * 00231 IF( NORMALTRANSR ) THEN 00232 * 00233 * N is odd and TRANSR = 'N' 00234 * 00235 IF( LOWER ) THEN 00236 * 00237 * N is odd, TRANSR = 'N', and UPLO = 'L' 00238 * 00239 IJP = 0 00240 JP = 0 00241 DO J = 0, N2 00242 DO I = J, N - 1 00243 IJ = I + JP 00244 ARF( IJ ) = AP( IJP ) 00245 IJP = IJP + 1 00246 END DO 00247 JP = JP + LDA 00248 END DO 00249 DO I = 0, N2 - 1 00250 DO J = 1 + I, N2 00251 IJ = I + J*LDA 00252 ARF( IJ ) = AP( IJP ) 00253 IJP = IJP + 1 00254 END DO 00255 END DO 00256 * 00257 ELSE 00258 * 00259 * N is odd, TRANSR = 'N', and UPLO = 'U' 00260 * 00261 IJP = 0 00262 DO J = 0, N1 - 1 00263 IJ = N2 + J 00264 DO I = 0, J 00265 ARF( IJ ) = AP( IJP ) 00266 IJP = IJP + 1 00267 IJ = IJ + LDA 00268 END DO 00269 END DO 00270 JS = 0 00271 DO J = N1, N - 1 00272 IJ = JS 00273 DO IJ = JS, JS + J 00274 ARF( IJ ) = AP( IJP ) 00275 IJP = IJP + 1 00276 END DO 00277 JS = JS + LDA 00278 END DO 00279 * 00280 END IF 00281 * 00282 ELSE 00283 * 00284 * N is odd and TRANSR = 'T' 00285 * 00286 IF( LOWER ) THEN 00287 * 00288 * N is odd, TRANSR = 'T', and UPLO = 'L' 00289 * 00290 IJP = 0 00291 DO I = 0, N2 00292 DO IJ = I*( LDA+1 ), N*LDA - 1, LDA 00293 ARF( IJ ) = AP( IJP ) 00294 IJP = IJP + 1 00295 END DO 00296 END DO 00297 JS = 1 00298 DO J = 0, N2 - 1 00299 DO IJ = JS, JS + N2 - J - 1 00300 ARF( IJ ) = AP( IJP ) 00301 IJP = IJP + 1 00302 END DO 00303 JS = JS + LDA + 1 00304 END DO 00305 * 00306 ELSE 00307 * 00308 * N is odd, TRANSR = 'T', and UPLO = 'U' 00309 * 00310 IJP = 0 00311 JS = N2*LDA 00312 DO J = 0, N1 - 1 00313 DO IJ = JS, JS + J 00314 ARF( IJ ) = AP( IJP ) 00315 IJP = IJP + 1 00316 END DO 00317 JS = JS + LDA 00318 END DO 00319 DO I = 0, N1 00320 DO IJ = I, I + ( N1+I )*LDA, LDA 00321 ARF( IJ ) = AP( IJP ) 00322 IJP = IJP + 1 00323 END DO 00324 END DO 00325 * 00326 END IF 00327 * 00328 END IF 00329 * 00330 ELSE 00331 * 00332 * N is even 00333 * 00334 IF( NORMALTRANSR ) THEN 00335 * 00336 * N is even and TRANSR = 'N' 00337 * 00338 IF( LOWER ) THEN 00339 * 00340 * N is even, TRANSR = 'N', and UPLO = 'L' 00341 * 00342 IJP = 0 00343 JP = 0 00344 DO J = 0, K - 1 00345 DO I = J, N - 1 00346 IJ = 1 + I + JP 00347 ARF( IJ ) = AP( IJP ) 00348 IJP = IJP + 1 00349 END DO 00350 JP = JP + LDA 00351 END DO 00352 DO I = 0, K - 1 00353 DO J = I, K - 1 00354 IJ = I + J*LDA 00355 ARF( IJ ) = AP( IJP ) 00356 IJP = IJP + 1 00357 END DO 00358 END DO 00359 * 00360 ELSE 00361 * 00362 * N is even, TRANSR = 'N', and UPLO = 'U' 00363 * 00364 IJP = 0 00365 DO J = 0, K - 1 00366 IJ = K + 1 + J 00367 DO I = 0, J 00368 ARF( IJ ) = AP( IJP ) 00369 IJP = IJP + 1 00370 IJ = IJ + LDA 00371 END DO 00372 END DO 00373 JS = 0 00374 DO J = K, N - 1 00375 IJ = JS 00376 DO IJ = JS, JS + J 00377 ARF( IJ ) = AP( IJP ) 00378 IJP = IJP + 1 00379 END DO 00380 JS = JS + LDA 00381 END DO 00382 * 00383 END IF 00384 * 00385 ELSE 00386 * 00387 * N is even and TRANSR = 'T' 00388 * 00389 IF( LOWER ) THEN 00390 * 00391 * N is even, TRANSR = 'T', and UPLO = 'L' 00392 * 00393 IJP = 0 00394 DO I = 0, K - 1 00395 DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA 00396 ARF( IJ ) = AP( IJP ) 00397 IJP = IJP + 1 00398 END DO 00399 END DO 00400 JS = 0 00401 DO J = 0, K - 1 00402 DO IJ = JS, JS + K - J - 1 00403 ARF( IJ ) = AP( IJP ) 00404 IJP = IJP + 1 00405 END DO 00406 JS = JS + LDA + 1 00407 END DO 00408 * 00409 ELSE 00410 * 00411 * N is even, TRANSR = 'T', and UPLO = 'U' 00412 * 00413 IJP = 0 00414 JS = ( K+1 )*LDA 00415 DO J = 0, K - 1 00416 DO IJ = JS, JS + J 00417 ARF( IJ ) = AP( IJP ) 00418 IJP = IJP + 1 00419 END DO 00420 JS = JS + LDA 00421 END DO 00422 DO I = 0, K - 1 00423 DO IJ = I, I + ( K+I )*LDA, LDA 00424 ARF( IJ ) = AP( IJP ) 00425 IJP = IJP + 1 00426 END DO 00427 END DO 00428 * 00429 END IF 00430 * 00431 END IF 00432 * 00433 END IF 00434 * 00435 RETURN 00436 * 00437 * End of DTPTTF 00438 * 00439 END