LAPACK 3.3.1
Linear Algebra PACKage

cgttrs.f

Go to the documentation of this file.
00001       SUBROUTINE CGTTRS( TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB,
00002      $                   INFO )
00003 *
00004 *  -- LAPACK routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       CHARACTER          TRANS
00011       INTEGER            INFO, LDB, N, NRHS
00012 *     ..
00013 *     .. Array Arguments ..
00014       INTEGER            IPIV( * )
00015       COMPLEX            B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
00016 *     ..
00017 *
00018 *  Purpose
00019 *  =======
00020 *
00021 *  CGTTRS solves one of the systems of equations
00022 *     A * X = B,  A**T * X = B,  or  A**H * X = B,
00023 *  with a tridiagonal matrix A using the LU factorization computed
00024 *  by CGTTRF.
00025 *
00026 *  Arguments
00027 *  =========
00028 *
00029 *  TRANS   (input) CHARACTER*1
00030 *          Specifies the form of the system of equations.
00031 *          = 'N':  A * X = B     (No transpose)
00032 *          = 'T':  A**T * X = B  (Transpose)
00033 *          = 'C':  A**H * X = B  (Conjugate transpose)
00034 *
00035 *  N       (input) INTEGER
00036 *          The order of the matrix A.
00037 *
00038 *  NRHS    (input) INTEGER
00039 *          The number of right hand sides, i.e., the number of columns
00040 *          of the matrix B.  NRHS >= 0.
00041 *
00042 *  DL      (input) COMPLEX array, dimension (N-1)
00043 *          The (n-1) multipliers that define the matrix L from the
00044 *          LU factorization of A.
00045 *
00046 *  D       (input) COMPLEX array, dimension (N)
00047 *          The n diagonal elements of the upper triangular matrix U from
00048 *          the LU factorization of A.
00049 *
00050 *  DU      (input) COMPLEX array, dimension (N-1)
00051 *          The (n-1) elements of the first super-diagonal of U.
00052 *
00053 *  DU2     (input) COMPLEX array, dimension (N-2)
00054 *          The (n-2) elements of the second super-diagonal of U.
00055 *
00056 *  IPIV    (input) INTEGER array, dimension (N)
00057 *          The pivot indices; for 1 <= i <= n, row i of the matrix was
00058 *          interchanged with row IPIV(i).  IPIV(i) will always be either
00059 *          i or i+1; IPIV(i) = i indicates a row interchange was not
00060 *          required.
00061 *
00062 *  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
00063 *          On entry, the matrix of right hand side vectors B.
00064 *          On exit, B is overwritten by the solution vectors X.
00065 *
00066 *  LDB     (input) INTEGER
00067 *          The leading dimension of the array B.  LDB >= max(1,N).
00068 *
00069 *  INFO    (output) INTEGER
00070 *          = 0:  successful exit
00071 *          < 0:  if INFO = -k, the k-th argument had an illegal value
00072 *
00073 *  =====================================================================
00074 *
00075 *     .. Local Scalars ..
00076       LOGICAL            NOTRAN
00077       INTEGER            ITRANS, J, JB, NB
00078 *     ..
00079 *     .. External Functions ..
00080       INTEGER            ILAENV
00081       EXTERNAL           ILAENV
00082 *     ..
00083 *     .. External Subroutines ..
00084       EXTERNAL           CGTTS2, XERBLA
00085 *     ..
00086 *     .. Intrinsic Functions ..
00087       INTRINSIC          MAX, MIN
00088 *     ..
00089 *     .. Executable Statements ..
00090 *
00091       INFO = 0
00092       NOTRAN = ( TRANS.EQ.'N' .OR. TRANS.EQ.'n' )
00093       IF( .NOT.NOTRAN .AND. .NOT.( TRANS.EQ.'T' .OR. TRANS.EQ.
00094      $    't' ) .AND. .NOT.( TRANS.EQ.'C' .OR. TRANS.EQ.'c' ) ) THEN
00095          INFO = -1
00096       ELSE IF( N.LT.0 ) THEN
00097          INFO = -2
00098       ELSE IF( NRHS.LT.0 ) THEN
00099          INFO = -3
00100       ELSE IF( LDB.LT.MAX( N, 1 ) ) THEN
00101          INFO = -10
00102       END IF
00103       IF( INFO.NE.0 ) THEN
00104          CALL XERBLA( 'CGTTRS', -INFO )
00105          RETURN
00106       END IF
00107 *
00108 *     Quick return if possible
00109 *
00110       IF( N.EQ.0 .OR. NRHS.EQ.0 )
00111      $   RETURN
00112 *
00113 *     Decode TRANS
00114 *
00115       IF( NOTRAN ) THEN
00116          ITRANS = 0
00117       ELSE IF( TRANS.EQ.'T' .OR. TRANS.EQ.'t' ) THEN
00118          ITRANS = 1
00119       ELSE
00120          ITRANS = 2
00121       END IF
00122 *
00123 *     Determine the number of right-hand sides to solve at a time.
00124 *
00125       IF( NRHS.EQ.1 ) THEN
00126          NB = 1
00127       ELSE
00128          NB = MAX( 1, ILAENV( 1, 'CGTTRS', TRANS, N, NRHS, -1, -1 ) )
00129       END IF
00130 *
00131       IF( NB.GE.NRHS ) THEN
00132          CALL CGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
00133       ELSE
00134          DO 10 J = 1, NRHS, NB
00135             JB = MIN( NRHS-J+1, NB )
00136             CALL CGTTS2( ITRANS, N, JB, DL, D, DU, DU2, IPIV, B( 1, J ),
00137      $                   LDB )
00138    10    CONTINUE
00139       END IF
00140 *
00141 *     End of CGTTRS
00142 *
00143       END
 All Files Functions