LAPACK 3.3.1
Linear Algebra PACKage

zlantr.f

Go to the documentation of this file.
00001       DOUBLE PRECISION FUNCTION ZLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
00002      $                 WORK )
00003 *
00004 *  -- LAPACK auxiliary routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       CHARACTER          DIAG, NORM, UPLO
00011       INTEGER            LDA, M, N
00012 *     ..
00013 *     .. Array Arguments ..
00014       DOUBLE PRECISION   WORK( * )
00015       COMPLEX*16         A( LDA, * )
00016 *     ..
00017 *
00018 *  Purpose
00019 *  =======
00020 *
00021 *  ZLANTR  returns the value of the one norm,  or the Frobenius norm, or
00022 *  the  infinity norm,  or the  element of  largest absolute value  of a
00023 *  trapezoidal or triangular matrix A.
00024 *
00025 *  Description
00026 *  ===========
00027 *
00028 *  ZLANTR returns the value
00029 *
00030 *     ZLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
00031 *              (
00032 *              ( norm1(A),         NORM = '1', 'O' or 'o'
00033 *              (
00034 *              ( normI(A),         NORM = 'I' or 'i'
00035 *              (
00036 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
00037 *
00038 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
00039 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
00040 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
00041 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
00042 *
00043 *  Arguments
00044 *  =========
00045 *
00046 *  NORM    (input) CHARACTER*1
00047 *          Specifies the value to be returned in ZLANTR as described
00048 *          above.
00049 *
00050 *  UPLO    (input) CHARACTER*1
00051 *          Specifies whether the matrix A is upper or lower trapezoidal.
00052 *          = 'U':  Upper trapezoidal
00053 *          = 'L':  Lower trapezoidal
00054 *          Note that A is triangular instead of trapezoidal if M = N.
00055 *
00056 *  DIAG    (input) CHARACTER*1
00057 *          Specifies whether or not the matrix A has unit diagonal.
00058 *          = 'N':  Non-unit diagonal
00059 *          = 'U':  Unit diagonal
00060 *
00061 *  M       (input) INTEGER
00062 *          The number of rows of the matrix A.  M >= 0, and if
00063 *          UPLO = 'U', M <= N.  When M = 0, ZLANTR is set to zero.
00064 *
00065 *  N       (input) INTEGER
00066 *          The number of columns of the matrix A.  N >= 0, and if
00067 *          UPLO = 'L', N <= M.  When N = 0, ZLANTR is set to zero.
00068 *
00069 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
00070 *          The trapezoidal matrix A (A is triangular if M = N).
00071 *          If UPLO = 'U', the leading m by n upper trapezoidal part of
00072 *          the array A contains the upper trapezoidal matrix, and the
00073 *          strictly lower triangular part of A is not referenced.
00074 *          If UPLO = 'L', the leading m by n lower trapezoidal part of
00075 *          the array A contains the lower trapezoidal matrix, and the
00076 *          strictly upper triangular part of A is not referenced.  Note
00077 *          that when DIAG = 'U', the diagonal elements of A are not
00078 *          referenced and are assumed to be one.
00079 *
00080 *  LDA     (input) INTEGER
00081 *          The leading dimension of the array A.  LDA >= max(M,1).
00082 *
00083 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
00084 *          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
00085 *          referenced.
00086 *
00087 * =====================================================================
00088 *
00089 *     .. Parameters ..
00090       DOUBLE PRECISION   ONE, ZERO
00091       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
00092 *     ..
00093 *     .. Local Scalars ..
00094       LOGICAL            UDIAG
00095       INTEGER            I, J
00096       DOUBLE PRECISION   SCALE, SUM, VALUE
00097 *     ..
00098 *     .. External Functions ..
00099       LOGICAL            LSAME
00100       EXTERNAL           LSAME
00101 *     ..
00102 *     .. External Subroutines ..
00103       EXTERNAL           ZLASSQ
00104 *     ..
00105 *     .. Intrinsic Functions ..
00106       INTRINSIC          ABS, MAX, MIN, SQRT
00107 *     ..
00108 *     .. Executable Statements ..
00109 *
00110       IF( MIN( M, N ).EQ.0 ) THEN
00111          VALUE = ZERO
00112       ELSE IF( LSAME( NORM, 'M' ) ) THEN
00113 *
00114 *        Find max(abs(A(i,j))).
00115 *
00116          IF( LSAME( DIAG, 'U' ) ) THEN
00117             VALUE = ONE
00118             IF( LSAME( UPLO, 'U' ) ) THEN
00119                DO 20 J = 1, N
00120                   DO 10 I = 1, MIN( M, J-1 )
00121                      VALUE = MAX( VALUE, ABS( A( I, J ) ) )
00122    10             CONTINUE
00123    20          CONTINUE
00124             ELSE
00125                DO 40 J = 1, N
00126                   DO 30 I = J + 1, M
00127                      VALUE = MAX( VALUE, ABS( A( I, J ) ) )
00128    30             CONTINUE
00129    40          CONTINUE
00130             END IF
00131          ELSE
00132             VALUE = ZERO
00133             IF( LSAME( UPLO, 'U' ) ) THEN
00134                DO 60 J = 1, N
00135                   DO 50 I = 1, MIN( M, J )
00136                      VALUE = MAX( VALUE, ABS( A( I, J ) ) )
00137    50             CONTINUE
00138    60          CONTINUE
00139             ELSE
00140                DO 80 J = 1, N
00141                   DO 70 I = J, M
00142                      VALUE = MAX( VALUE, ABS( A( I, J ) ) )
00143    70             CONTINUE
00144    80          CONTINUE
00145             END IF
00146          END IF
00147       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
00148 *
00149 *        Find norm1(A).
00150 *
00151          VALUE = ZERO
00152          UDIAG = LSAME( DIAG, 'U' )
00153          IF( LSAME( UPLO, 'U' ) ) THEN
00154             DO 110 J = 1, N
00155                IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
00156                   SUM = ONE
00157                   DO 90 I = 1, J - 1
00158                      SUM = SUM + ABS( A( I, J ) )
00159    90             CONTINUE
00160                ELSE
00161                   SUM = ZERO
00162                   DO 100 I = 1, MIN( M, J )
00163                      SUM = SUM + ABS( A( I, J ) )
00164   100             CONTINUE
00165                END IF
00166                VALUE = MAX( VALUE, SUM )
00167   110       CONTINUE
00168          ELSE
00169             DO 140 J = 1, N
00170                IF( UDIAG ) THEN
00171                   SUM = ONE
00172                   DO 120 I = J + 1, M
00173                      SUM = SUM + ABS( A( I, J ) )
00174   120             CONTINUE
00175                ELSE
00176                   SUM = ZERO
00177                   DO 130 I = J, M
00178                      SUM = SUM + ABS( A( I, J ) )
00179   130             CONTINUE
00180                END IF
00181                VALUE = MAX( VALUE, SUM )
00182   140       CONTINUE
00183          END IF
00184       ELSE IF( LSAME( NORM, 'I' ) ) THEN
00185 *
00186 *        Find normI(A).
00187 *
00188          IF( LSAME( UPLO, 'U' ) ) THEN
00189             IF( LSAME( DIAG, 'U' ) ) THEN
00190                DO 150 I = 1, M
00191                   WORK( I ) = ONE
00192   150          CONTINUE
00193                DO 170 J = 1, N
00194                   DO 160 I = 1, MIN( M, J-1 )
00195                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
00196   160             CONTINUE
00197   170          CONTINUE
00198             ELSE
00199                DO 180 I = 1, M
00200                   WORK( I ) = ZERO
00201   180          CONTINUE
00202                DO 200 J = 1, N
00203                   DO 190 I = 1, MIN( M, J )
00204                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
00205   190             CONTINUE
00206   200          CONTINUE
00207             END IF
00208          ELSE
00209             IF( LSAME( DIAG, 'U' ) ) THEN
00210                DO 210 I = 1, N
00211                   WORK( I ) = ONE
00212   210          CONTINUE
00213                DO 220 I = N + 1, M
00214                   WORK( I ) = ZERO
00215   220          CONTINUE
00216                DO 240 J = 1, N
00217                   DO 230 I = J + 1, M
00218                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
00219   230             CONTINUE
00220   240          CONTINUE
00221             ELSE
00222                DO 250 I = 1, M
00223                   WORK( I ) = ZERO
00224   250          CONTINUE
00225                DO 270 J = 1, N
00226                   DO 260 I = J, M
00227                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
00228   260             CONTINUE
00229   270          CONTINUE
00230             END IF
00231          END IF
00232          VALUE = ZERO
00233          DO 280 I = 1, M
00234             VALUE = MAX( VALUE, WORK( I ) )
00235   280    CONTINUE
00236       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
00237 *
00238 *        Find normF(A).
00239 *
00240          IF( LSAME( UPLO, 'U' ) ) THEN
00241             IF( LSAME( DIAG, 'U' ) ) THEN
00242                SCALE = ONE
00243                SUM = MIN( M, N )
00244                DO 290 J = 2, N
00245                   CALL ZLASSQ( MIN( M, J-1 ), A( 1, J ), 1, SCALE, SUM )
00246   290          CONTINUE
00247             ELSE
00248                SCALE = ZERO
00249                SUM = ONE
00250                DO 300 J = 1, N
00251                   CALL ZLASSQ( MIN( M, J ), A( 1, J ), 1, SCALE, SUM )
00252   300          CONTINUE
00253             END IF
00254          ELSE
00255             IF( LSAME( DIAG, 'U' ) ) THEN
00256                SCALE = ONE
00257                SUM = MIN( M, N )
00258                DO 310 J = 1, N
00259                   CALL ZLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, SCALE,
00260      $                         SUM )
00261   310          CONTINUE
00262             ELSE
00263                SCALE = ZERO
00264                SUM = ONE
00265                DO 320 J = 1, N
00266                   CALL ZLASSQ( M-J+1, A( J, J ), 1, SCALE, SUM )
00267   320          CONTINUE
00268             END IF
00269          END IF
00270          VALUE = SCALE*SQRT( SUM )
00271       END IF
00272 *
00273       ZLANTR = VALUE
00274       RETURN
00275 *
00276 *     End of ZLANTR
00277 *
00278       END
 All Files Functions