LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE SGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK, 00002 $ RESULT ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 INTEGER ITYPE, LDA, LDB, LDU, LDV, N 00010 REAL RESULT 00011 * .. 00012 * .. Array Arguments .. 00013 REAL A( LDA, * ), B( LDB, * ), U( LDU, * ), 00014 $ V( LDV, * ), WORK( * ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * SGET51 generally checks a decomposition of the form 00021 * 00022 * A = U B V' 00023 * 00024 * where ' means transpose and U and V are orthogonal. 00025 * 00026 * Specifically, if ITYPE=1 00027 * 00028 * RESULT = | A - U B V' | / ( |A| n ulp ) 00029 * 00030 * If ITYPE=2, then: 00031 * 00032 * RESULT = | A - B | / ( |A| n ulp ) 00033 * 00034 * If ITYPE=3, then: 00035 * 00036 * RESULT = | I - UU' | / ( n ulp ) 00037 * 00038 * Arguments 00039 * ========= 00040 * 00041 * ITYPE (input) INTEGER 00042 * Specifies the type of tests to be performed. 00043 * =1: RESULT = | A - U B V' | / ( |A| n ulp ) 00044 * =2: RESULT = | A - B | / ( |A| n ulp ) 00045 * =3: RESULT = | I - UU' | / ( n ulp ) 00046 * 00047 * N (input) INTEGER 00048 * The size of the matrix. If it is zero, SGET51 does nothing. 00049 * It must be at least zero. 00050 * 00051 * A (input) REAL array, dimension (LDA, N) 00052 * The original (unfactored) matrix. 00053 * 00054 * LDA (input) INTEGER 00055 * The leading dimension of A. It must be at least 1 00056 * and at least N. 00057 * 00058 * B (input) REAL array, dimension (LDB, N) 00059 * The factored matrix. 00060 * 00061 * LDB (input) INTEGER 00062 * The leading dimension of B. It must be at least 1 00063 * and at least N. 00064 * 00065 * U (input) REAL array, dimension (LDU, N) 00066 * The orthogonal matrix on the left-hand side in the 00067 * decomposition. 00068 * Not referenced if ITYPE=2 00069 * 00070 * LDU (input) INTEGER 00071 * The leading dimension of U. LDU must be at least N and 00072 * at least 1. 00073 * 00074 * V (input) REAL array, dimension (LDV, N) 00075 * The orthogonal matrix on the left-hand side in the 00076 * decomposition. 00077 * Not referenced if ITYPE=2 00078 * 00079 * LDV (input) INTEGER 00080 * The leading dimension of V. LDV must be at least N and 00081 * at least 1. 00082 * 00083 * WORK (workspace) REAL array, dimension (2*N**2) 00084 * 00085 * RESULT (output) REAL 00086 * The values computed by the test specified by ITYPE. The 00087 * value is currently limited to 1/ulp, to avoid overflow. 00088 * Errors are flagged by RESULT=10/ulp. 00089 * 00090 * ===================================================================== 00091 * 00092 * .. Parameters .. 00093 REAL ZERO, ONE, TEN 00094 PARAMETER ( ZERO = 0.0, ONE = 1.0E0, TEN = 10.0E0 ) 00095 * .. 00096 * .. Local Scalars .. 00097 INTEGER JCOL, JDIAG, JROW 00098 REAL ANORM, ULP, UNFL, WNORM 00099 * .. 00100 * .. External Functions .. 00101 REAL SLAMCH, SLANGE 00102 EXTERNAL SLAMCH, SLANGE 00103 * .. 00104 * .. External Subroutines .. 00105 EXTERNAL SGEMM, SLACPY 00106 * .. 00107 * .. Intrinsic Functions .. 00108 INTRINSIC MAX, MIN, REAL 00109 * .. 00110 * .. Executable Statements .. 00111 * 00112 RESULT = ZERO 00113 IF( N.LE.0 ) 00114 $ RETURN 00115 * 00116 * Constants 00117 * 00118 UNFL = SLAMCH( 'Safe minimum' ) 00119 ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) 00120 * 00121 * Some Error Checks 00122 * 00123 IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN 00124 RESULT = TEN / ULP 00125 RETURN 00126 END IF 00127 * 00128 IF( ITYPE.LE.2 ) THEN 00129 * 00130 * Tests scaled by the norm(A) 00131 * 00132 ANORM = MAX( SLANGE( '1', N, N, A, LDA, WORK ), UNFL ) 00133 * 00134 IF( ITYPE.EQ.1 ) THEN 00135 * 00136 * ITYPE=1: Compute W = A - UBV' 00137 * 00138 CALL SLACPY( ' ', N, N, A, LDA, WORK, N ) 00139 CALL SGEMM( 'N', 'N', N, N, N, ONE, U, LDU, B, LDB, ZERO, 00140 $ WORK( N**2+1 ), N ) 00141 * 00142 CALL SGEMM( 'N', 'C', N, N, N, -ONE, WORK( N**2+1 ), N, V, 00143 $ LDV, ONE, WORK, N ) 00144 * 00145 ELSE 00146 * 00147 * ITYPE=2: Compute W = A - B 00148 * 00149 CALL SLACPY( ' ', N, N, B, LDB, WORK, N ) 00150 * 00151 DO 20 JCOL = 1, N 00152 DO 10 JROW = 1, N 00153 WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) ) 00154 $ - A( JROW, JCOL ) 00155 10 CONTINUE 00156 20 CONTINUE 00157 END IF 00158 * 00159 * Compute norm(W)/ ( ulp*norm(A) ) 00160 * 00161 WNORM = SLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) ) 00162 * 00163 IF( ANORM.GT.WNORM ) THEN 00164 RESULT = ( WNORM / ANORM ) / ( N*ULP ) 00165 ELSE 00166 IF( ANORM.LT.ONE ) THEN 00167 RESULT = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP ) 00168 ELSE 00169 RESULT = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP ) 00170 END IF 00171 END IF 00172 * 00173 ELSE 00174 * 00175 * Tests not scaled by norm(A) 00176 * 00177 * ITYPE=3: Compute UU' - I 00178 * 00179 CALL SGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK, 00180 $ N ) 00181 * 00182 DO 30 JDIAG = 1, N 00183 WORK( ( N+1 )*( JDIAG-1 )+1 ) = WORK( ( N+1 )*( JDIAG-1 )+ 00184 $ 1 ) - ONE 00185 30 CONTINUE 00186 * 00187 RESULT = MIN( SLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) ), 00188 $ REAL( N ) ) / ( N*ULP ) 00189 END IF 00190 * 00191 RETURN 00192 * 00193 * End of SGET51 00194 * 00195 END