LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE SSPR(UPLO,N,ALPHA,X,INCX,AP) 00002 * .. Scalar Arguments .. 00003 REAL ALPHA 00004 INTEGER INCX,N 00005 CHARACTER UPLO 00006 * .. 00007 * .. Array Arguments .. 00008 REAL AP(*),X(*) 00009 * .. 00010 * 00011 * Purpose 00012 * ======= 00013 * 00014 * SSPR performs the symmetric rank 1 operation 00015 * 00016 * A := alpha*x*x**T + A, 00017 * 00018 * where alpha is a real scalar, x is an n element vector and A is an 00019 * n by n symmetric matrix, supplied in packed form. 00020 * 00021 * Arguments 00022 * ========== 00023 * 00024 * UPLO - CHARACTER*1. 00025 * On entry, UPLO specifies whether the upper or lower 00026 * triangular part of the matrix A is supplied in the packed 00027 * array AP as follows: 00028 * 00029 * UPLO = 'U' or 'u' The upper triangular part of A is 00030 * supplied in AP. 00031 * 00032 * UPLO = 'L' or 'l' The lower triangular part of A is 00033 * supplied in AP. 00034 * 00035 * Unchanged on exit. 00036 * 00037 * N - INTEGER. 00038 * On entry, N specifies the order of the matrix A. 00039 * N must be at least zero. 00040 * Unchanged on exit. 00041 * 00042 * ALPHA - REAL . 00043 * On entry, ALPHA specifies the scalar alpha. 00044 * Unchanged on exit. 00045 * 00046 * X - REAL array of dimension at least 00047 * ( 1 + ( n - 1 )*abs( INCX ) ). 00048 * Before entry, the incremented array X must contain the n 00049 * element vector x. 00050 * Unchanged on exit. 00051 * 00052 * INCX - INTEGER. 00053 * On entry, INCX specifies the increment for the elements of 00054 * X. INCX must not be zero. 00055 * Unchanged on exit. 00056 * 00057 * AP - REAL array of DIMENSION at least 00058 * ( ( n*( n + 1 ) )/2 ). 00059 * Before entry with UPLO = 'U' or 'u', the array AP must 00060 * contain the upper triangular part of the symmetric matrix 00061 * packed sequentially, column by column, so that AP( 1 ) 00062 * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) 00063 * and a( 2, 2 ) respectively, and so on. On exit, the array 00064 * AP is overwritten by the upper triangular part of the 00065 * updated matrix. 00066 * Before entry with UPLO = 'L' or 'l', the array AP must 00067 * contain the lower triangular part of the symmetric matrix 00068 * packed sequentially, column by column, so that AP( 1 ) 00069 * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) 00070 * and a( 3, 1 ) respectively, and so on. On exit, the array 00071 * AP is overwritten by the lower triangular part of the 00072 * updated matrix. 00073 * 00074 * Further Details 00075 * =============== 00076 * 00077 * Level 2 Blas routine. 00078 * 00079 * -- Written on 22-October-1986. 00080 * Jack Dongarra, Argonne National Lab. 00081 * Jeremy Du Croz, Nag Central Office. 00082 * Sven Hammarling, Nag Central Office. 00083 * Richard Hanson, Sandia National Labs. 00084 * 00085 * ===================================================================== 00086 * 00087 * .. Parameters .. 00088 REAL ZERO 00089 PARAMETER (ZERO=0.0E+0) 00090 * .. 00091 * .. Local Scalars .. 00092 REAL TEMP 00093 INTEGER I,INFO,IX,J,JX,K,KK,KX 00094 * .. 00095 * .. External Functions .. 00096 LOGICAL LSAME 00097 EXTERNAL LSAME 00098 * .. 00099 * .. External Subroutines .. 00100 EXTERNAL XERBLA 00101 * .. 00102 * 00103 * Test the input parameters. 00104 * 00105 INFO = 0 00106 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN 00107 INFO = 1 00108 ELSE IF (N.LT.0) THEN 00109 INFO = 2 00110 ELSE IF (INCX.EQ.0) THEN 00111 INFO = 5 00112 END IF 00113 IF (INFO.NE.0) THEN 00114 CALL XERBLA('SSPR ',INFO) 00115 RETURN 00116 END IF 00117 * 00118 * Quick return if possible. 00119 * 00120 IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN 00121 * 00122 * Set the start point in X if the increment is not unity. 00123 * 00124 IF (INCX.LE.0) THEN 00125 KX = 1 - (N-1)*INCX 00126 ELSE IF (INCX.NE.1) THEN 00127 KX = 1 00128 END IF 00129 * 00130 * Start the operations. In this version the elements of the array AP 00131 * are accessed sequentially with one pass through AP. 00132 * 00133 KK = 1 00134 IF (LSAME(UPLO,'U')) THEN 00135 * 00136 * Form A when upper triangle is stored in AP. 00137 * 00138 IF (INCX.EQ.1) THEN 00139 DO 20 J = 1,N 00140 IF (X(J).NE.ZERO) THEN 00141 TEMP = ALPHA*X(J) 00142 K = KK 00143 DO 10 I = 1,J 00144 AP(K) = AP(K) + X(I)*TEMP 00145 K = K + 1 00146 10 CONTINUE 00147 END IF 00148 KK = KK + J 00149 20 CONTINUE 00150 ELSE 00151 JX = KX 00152 DO 40 J = 1,N 00153 IF (X(JX).NE.ZERO) THEN 00154 TEMP = ALPHA*X(JX) 00155 IX = KX 00156 DO 30 K = KK,KK + J - 1 00157 AP(K) = AP(K) + X(IX)*TEMP 00158 IX = IX + INCX 00159 30 CONTINUE 00160 END IF 00161 JX = JX + INCX 00162 KK = KK + J 00163 40 CONTINUE 00164 END IF 00165 ELSE 00166 * 00167 * Form A when lower triangle is stored in AP. 00168 * 00169 IF (INCX.EQ.1) THEN 00170 DO 60 J = 1,N 00171 IF (X(J).NE.ZERO) THEN 00172 TEMP = ALPHA*X(J) 00173 K = KK 00174 DO 50 I = J,N 00175 AP(K) = AP(K) + X(I)*TEMP 00176 K = K + 1 00177 50 CONTINUE 00178 END IF 00179 KK = KK + N - J + 1 00180 60 CONTINUE 00181 ELSE 00182 JX = KX 00183 DO 80 J = 1,N 00184 IF (X(JX).NE.ZERO) THEN 00185 TEMP = ALPHA*X(JX) 00186 IX = JX 00187 DO 70 K = KK,KK + N - J 00188 AP(K) = AP(K) + X(IX)*TEMP 00189 IX = IX + INCX 00190 70 CONTINUE 00191 END IF 00192 JX = JX + INCX 00193 KK = KK + N - J + 1 00194 80 CONTINUE 00195 END IF 00196 END IF 00197 * 00198 RETURN 00199 * 00200 * End of SSPR . 00201 * 00202 END