LAPACK 3.3.1
Linear Algebra PACKage

sspevx.f

Go to the documentation of this file.
00001       SUBROUTINE SSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
00002      $                   ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
00003      $                   INFO )
00004 *
00005 *  -- LAPACK driver routine (version 3.2) --
00006 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00007 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00008 *     November 2006
00009 *
00010 *     .. Scalar Arguments ..
00011       CHARACTER          JOBZ, RANGE, UPLO
00012       INTEGER            IL, INFO, IU, LDZ, M, N
00013       REAL               ABSTOL, VL, VU
00014 *     ..
00015 *     .. Array Arguments ..
00016       INTEGER            IFAIL( * ), IWORK( * )
00017       REAL               AP( * ), W( * ), WORK( * ), Z( LDZ, * )
00018 *     ..
00019 *
00020 *  Purpose
00021 *  =======
00022 *
00023 *  SSPEVX computes selected eigenvalues and, optionally, eigenvectors
00024 *  of a real symmetric matrix A in packed storage.  Eigenvalues/vectors
00025 *  can be selected by specifying either a range of values or a range of
00026 *  indices for the desired eigenvalues.
00027 *
00028 *  Arguments
00029 *  =========
00030 *
00031 *  JOBZ    (input) CHARACTER*1
00032 *          = 'N':  Compute eigenvalues only;
00033 *          = 'V':  Compute eigenvalues and eigenvectors.
00034 *
00035 *  RANGE   (input) CHARACTER*1
00036 *          = 'A': all eigenvalues will be found;
00037 *          = 'V': all eigenvalues in the half-open interval (VL,VU]
00038 *                 will be found;
00039 *          = 'I': the IL-th through IU-th eigenvalues will be found.
00040 *
00041 *  UPLO    (input) CHARACTER*1
00042 *          = 'U':  Upper triangle of A is stored;
00043 *          = 'L':  Lower triangle of A is stored.
00044 *
00045 *  N       (input) INTEGER
00046 *          The order of the matrix A.  N >= 0.
00047 *
00048 *  AP      (input/output) REAL array, dimension (N*(N+1)/2)
00049 *          On entry, the upper or lower triangle of the symmetric matrix
00050 *          A, packed columnwise in a linear array.  The j-th column of A
00051 *          is stored in the array AP as follows:
00052 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
00053 *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
00054 *
00055 *          On exit, AP is overwritten by values generated during the
00056 *          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
00057 *          and first superdiagonal of the tridiagonal matrix T overwrite
00058 *          the corresponding elements of A, and if UPLO = 'L', the
00059 *          diagonal and first subdiagonal of T overwrite the
00060 *          corresponding elements of A.
00061 *
00062 *  VL      (input) REAL
00063 *  VU      (input) REAL
00064 *          If RANGE='V', the lower and upper bounds of the interval to
00065 *          be searched for eigenvalues. VL < VU.
00066 *          Not referenced if RANGE = 'A' or 'I'.
00067 *
00068 *  IL      (input) INTEGER
00069 *  IU      (input) INTEGER
00070 *          If RANGE='I', the indices (in ascending order) of the
00071 *          smallest and largest eigenvalues to be returned.
00072 *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
00073 *          Not referenced if RANGE = 'A' or 'V'.
00074 *
00075 *  ABSTOL  (input) REAL
00076 *          The absolute error tolerance for the eigenvalues.
00077 *          An approximate eigenvalue is accepted as converged
00078 *          when it is determined to lie in an interval [a,b]
00079 *          of width less than or equal to
00080 *
00081 *                  ABSTOL + EPS *   max( |a|,|b| ) ,
00082 *
00083 *          where EPS is the machine precision.  If ABSTOL is less than
00084 *          or equal to zero, then  EPS*|T|  will be used in its place,
00085 *          where |T| is the 1-norm of the tridiagonal matrix obtained
00086 *          by reducing AP to tridiagonal form.
00087 *
00088 *          Eigenvalues will be computed most accurately when ABSTOL is
00089 *          set to twice the underflow threshold 2*SLAMCH('S'), not zero.
00090 *          If this routine returns with INFO>0, indicating that some
00091 *          eigenvectors did not converge, try setting ABSTOL to
00092 *          2*SLAMCH('S').
00093 *
00094 *          See "Computing Small Singular Values of Bidiagonal Matrices
00095 *          with Guaranteed High Relative Accuracy," by Demmel and
00096 *          Kahan, LAPACK Working Note #3.
00097 *
00098 *  M       (output) INTEGER
00099 *          The total number of eigenvalues found.  0 <= M <= N.
00100 *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
00101 *
00102 *  W       (output) REAL array, dimension (N)
00103 *          If INFO = 0, the selected eigenvalues in ascending order.
00104 *
00105 *  Z       (output) REAL array, dimension (LDZ, max(1,M))
00106 *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
00107 *          contain the orthonormal eigenvectors of the matrix A
00108 *          corresponding to the selected eigenvalues, with the i-th
00109 *          column of Z holding the eigenvector associated with W(i).
00110 *          If an eigenvector fails to converge, then that column of Z
00111 *          contains the latest approximation to the eigenvector, and the
00112 *          index of the eigenvector is returned in IFAIL.
00113 *          If JOBZ = 'N', then Z is not referenced.
00114 *          Note: the user must ensure that at least max(1,M) columns are
00115 *          supplied in the array Z; if RANGE = 'V', the exact value of M
00116 *          is not known in advance and an upper bound must be used.
00117 *
00118 *  LDZ     (input) INTEGER
00119 *          The leading dimension of the array Z.  LDZ >= 1, and if
00120 *          JOBZ = 'V', LDZ >= max(1,N).
00121 *
00122 *  WORK    (workspace) REAL array, dimension (8*N)
00123 *
00124 *  IWORK   (workspace) INTEGER array, dimension (5*N)
00125 *
00126 *  IFAIL   (output) INTEGER array, dimension (N)
00127 *          If JOBZ = 'V', then if INFO = 0, the first M elements of
00128 *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
00129 *          indices of the eigenvectors that failed to converge.
00130 *          If JOBZ = 'N', then IFAIL is not referenced.
00131 *
00132 *  INFO    (output) INTEGER
00133 *          = 0:  successful exit
00134 *          < 0:  if INFO = -i, the i-th argument had an illegal value
00135 *          > 0:  if INFO = i, then i eigenvectors failed to converge.
00136 *                Their indices are stored in array IFAIL.
00137 *
00138 *  =====================================================================
00139 *
00140 *     .. Parameters ..
00141       REAL               ZERO, ONE
00142       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
00143 *     ..
00144 *     .. Local Scalars ..
00145       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
00146       CHARACTER          ORDER
00147       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
00148      $                   INDISP, INDIWO, INDTAU, INDWRK, ISCALE, ITMP1,
00149      $                   J, JJ, NSPLIT
00150       REAL               ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
00151      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
00152 *     ..
00153 *     .. External Functions ..
00154       LOGICAL            LSAME
00155       REAL               SLAMCH, SLANSP
00156       EXTERNAL           LSAME, SLAMCH, SLANSP
00157 *     ..
00158 *     .. External Subroutines ..
00159       EXTERNAL           SCOPY, SOPGTR, SOPMTR, SSCAL, SSPTRD, SSTEBZ,
00160      $                   SSTEIN, SSTEQR, SSTERF, SSWAP, XERBLA
00161 *     ..
00162 *     .. Intrinsic Functions ..
00163       INTRINSIC          MAX, MIN, SQRT
00164 *     ..
00165 *     .. Executable Statements ..
00166 *
00167 *     Test the input parameters.
00168 *
00169       WANTZ = LSAME( JOBZ, 'V' )
00170       ALLEIG = LSAME( RANGE, 'A' )
00171       VALEIG = LSAME( RANGE, 'V' )
00172       INDEIG = LSAME( RANGE, 'I' )
00173 *
00174       INFO = 0
00175       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
00176          INFO = -1
00177       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
00178          INFO = -2
00179       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
00180      $          THEN
00181          INFO = -3
00182       ELSE IF( N.LT.0 ) THEN
00183          INFO = -4
00184       ELSE
00185          IF( VALEIG ) THEN
00186             IF( N.GT.0 .AND. VU.LE.VL )
00187      $         INFO = -7
00188          ELSE IF( INDEIG ) THEN
00189             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
00190                INFO = -8
00191             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
00192                INFO = -9
00193             END IF
00194          END IF
00195       END IF
00196       IF( INFO.EQ.0 ) THEN
00197          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
00198      $      INFO = -14
00199       END IF
00200 *
00201       IF( INFO.NE.0 ) THEN
00202          CALL XERBLA( 'SSPEVX', -INFO )
00203          RETURN
00204       END IF
00205 *
00206 *     Quick return if possible
00207 *
00208       M = 0
00209       IF( N.EQ.0 )
00210      $   RETURN
00211 *
00212       IF( N.EQ.1 ) THEN
00213          IF( ALLEIG .OR. INDEIG ) THEN
00214             M = 1
00215             W( 1 ) = AP( 1 )
00216          ELSE
00217             IF( VL.LT.AP( 1 ) .AND. VU.GE.AP( 1 ) ) THEN
00218                M = 1
00219                W( 1 ) = AP( 1 )
00220             END IF
00221          END IF
00222          IF( WANTZ )
00223      $      Z( 1, 1 ) = ONE
00224          RETURN
00225       END IF
00226 *
00227 *     Get machine constants.
00228 *
00229       SAFMIN = SLAMCH( 'Safe minimum' )
00230       EPS = SLAMCH( 'Precision' )
00231       SMLNUM = SAFMIN / EPS
00232       BIGNUM = ONE / SMLNUM
00233       RMIN = SQRT( SMLNUM )
00234       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
00235 *
00236 *     Scale matrix to allowable range, if necessary.
00237 *
00238       ISCALE = 0
00239       ABSTLL = ABSTOL
00240       IF ( VALEIG ) THEN
00241          VLL = VL
00242          VUU = VU
00243       ELSE
00244          VLL = ZERO
00245          VUU = ZERO
00246       ENDIF
00247       ANRM = SLANSP( 'M', UPLO, N, AP, WORK )
00248       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
00249          ISCALE = 1
00250          SIGMA = RMIN / ANRM
00251       ELSE IF( ANRM.GT.RMAX ) THEN
00252          ISCALE = 1
00253          SIGMA = RMAX / ANRM
00254       END IF
00255       IF( ISCALE.EQ.1 ) THEN
00256          CALL SSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
00257          IF( ABSTOL.GT.0 )
00258      $      ABSTLL = ABSTOL*SIGMA
00259          IF( VALEIG ) THEN
00260             VLL = VL*SIGMA
00261             VUU = VU*SIGMA
00262          END IF
00263       END IF
00264 *
00265 *     Call SSPTRD to reduce symmetric packed matrix to tridiagonal form.
00266 *
00267       INDTAU = 1
00268       INDE = INDTAU + N
00269       INDD = INDE + N
00270       INDWRK = INDD + N
00271       CALL SSPTRD( UPLO, N, AP, WORK( INDD ), WORK( INDE ),
00272      $             WORK( INDTAU ), IINFO )
00273 *
00274 *     If all eigenvalues are desired and ABSTOL is less than or equal
00275 *     to zero, then call SSTERF or SOPGTR and SSTEQR.  If this fails
00276 *     for some eigenvalue, then try SSTEBZ.
00277 *
00278       TEST = .FALSE.
00279       IF (INDEIG) THEN
00280          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
00281             TEST = .TRUE.
00282          END IF
00283       END IF
00284       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
00285          CALL SCOPY( N, WORK( INDD ), 1, W, 1 )
00286          INDEE = INDWRK + 2*N
00287          IF( .NOT.WANTZ ) THEN
00288             CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
00289             CALL SSTERF( N, W, WORK( INDEE ), INFO )
00290          ELSE
00291             CALL SOPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
00292      $                   WORK( INDWRK ), IINFO )
00293             CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
00294             CALL SSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
00295      $                   WORK( INDWRK ), INFO )
00296             IF( INFO.EQ.0 ) THEN
00297                DO 10 I = 1, N
00298                   IFAIL( I ) = 0
00299    10          CONTINUE
00300             END IF
00301          END IF
00302          IF( INFO.EQ.0 ) THEN
00303             M = N
00304             GO TO 20
00305          END IF
00306          INFO = 0
00307       END IF
00308 *
00309 *     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
00310 *
00311       IF( WANTZ ) THEN
00312          ORDER = 'B'
00313       ELSE
00314          ORDER = 'E'
00315       END IF
00316       INDIBL = 1
00317       INDISP = INDIBL + N
00318       INDIWO = INDISP + N
00319       CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
00320      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
00321      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
00322      $             IWORK( INDIWO ), INFO )
00323 *
00324       IF( WANTZ ) THEN
00325          CALL SSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
00326      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
00327      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
00328 *
00329 *        Apply orthogonal matrix used in reduction to tridiagonal
00330 *        form to eigenvectors returned by SSTEIN.
00331 *
00332          CALL SOPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
00333      $                WORK( INDWRK ), IINFO )
00334       END IF
00335 *
00336 *     If matrix was scaled, then rescale eigenvalues appropriately.
00337 *
00338    20 CONTINUE
00339       IF( ISCALE.EQ.1 ) THEN
00340          IF( INFO.EQ.0 ) THEN
00341             IMAX = M
00342          ELSE
00343             IMAX = INFO - 1
00344          END IF
00345          CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
00346       END IF
00347 *
00348 *     If eigenvalues are not in order, then sort them, along with
00349 *     eigenvectors.
00350 *
00351       IF( WANTZ ) THEN
00352          DO 40 J = 1, M - 1
00353             I = 0
00354             TMP1 = W( J )
00355             DO 30 JJ = J + 1, M
00356                IF( W( JJ ).LT.TMP1 ) THEN
00357                   I = JJ
00358                   TMP1 = W( JJ )
00359                END IF
00360    30       CONTINUE
00361 *
00362             IF( I.NE.0 ) THEN
00363                ITMP1 = IWORK( INDIBL+I-1 )
00364                W( I ) = W( J )
00365                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
00366                W( J ) = TMP1
00367                IWORK( INDIBL+J-1 ) = ITMP1
00368                CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
00369                IF( INFO.NE.0 ) THEN
00370                   ITMP1 = IFAIL( I )
00371                   IFAIL( I ) = IFAIL( J )
00372                   IFAIL( J ) = ITMP1
00373                END IF
00374             END IF
00375    40    CONTINUE
00376       END IF
00377 *
00378       RETURN
00379 *
00380 *     End of SSPEVX
00381 *
00382       END
 All Files Functions