LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE ZHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, 00002 $ RWORK, INFO ) 00003 * 00004 * -- LAPACK driver routine (version 3.3.1) -- 00005 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00006 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00007 * -- April 2011 -- 00008 * 00009 * .. Scalar Arguments .. 00010 CHARACTER JOBZ, UPLO 00011 INTEGER INFO, ITYPE, LDZ, N 00012 * .. 00013 * .. Array Arguments .. 00014 DOUBLE PRECISION RWORK( * ), W( * ) 00015 COMPLEX*16 AP( * ), BP( * ), WORK( * ), Z( LDZ, * ) 00016 * .. 00017 * 00018 * Purpose 00019 * ======= 00020 * 00021 * ZHPGV computes all the eigenvalues and, optionally, the eigenvectors 00022 * of a complex generalized Hermitian-definite eigenproblem, of the form 00023 * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. 00024 * Here A and B are assumed to be Hermitian, stored in packed format, 00025 * and B is also positive definite. 00026 * 00027 * Arguments 00028 * ========= 00029 * 00030 * ITYPE (input) INTEGER 00031 * Specifies the problem type to be solved: 00032 * = 1: A*x = (lambda)*B*x 00033 * = 2: A*B*x = (lambda)*x 00034 * = 3: B*A*x = (lambda)*x 00035 * 00036 * JOBZ (input) CHARACTER*1 00037 * = 'N': Compute eigenvalues only; 00038 * = 'V': Compute eigenvalues and eigenvectors. 00039 * 00040 * UPLO (input) CHARACTER*1 00041 * = 'U': Upper triangles of A and B are stored; 00042 * = 'L': Lower triangles of A and B are stored. 00043 * 00044 * N (input) INTEGER 00045 * The order of the matrices A and B. N >= 0. 00046 * 00047 * AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) 00048 * On entry, the upper or lower triangle of the Hermitian matrix 00049 * A, packed columnwise in a linear array. The j-th column of A 00050 * is stored in the array AP as follows: 00051 * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; 00052 * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. 00053 * 00054 * On exit, the contents of AP are destroyed. 00055 * 00056 * BP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) 00057 * On entry, the upper or lower triangle of the Hermitian matrix 00058 * B, packed columnwise in a linear array. The j-th column of B 00059 * is stored in the array BP as follows: 00060 * if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; 00061 * if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. 00062 * 00063 * On exit, the triangular factor U or L from the Cholesky 00064 * factorization B = U**H*U or B = L*L**H, in the same storage 00065 * format as B. 00066 * 00067 * W (output) DOUBLE PRECISION array, dimension (N) 00068 * If INFO = 0, the eigenvalues in ascending order. 00069 * 00070 * Z (output) COMPLEX*16 array, dimension (LDZ, N) 00071 * If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of 00072 * eigenvectors. The eigenvectors are normalized as follows: 00073 * if ITYPE = 1 or 2, Z**H*B*Z = I; 00074 * if ITYPE = 3, Z**H*inv(B)*Z = I. 00075 * If JOBZ = 'N', then Z is not referenced. 00076 * 00077 * LDZ (input) INTEGER 00078 * The leading dimension of the array Z. LDZ >= 1, and if 00079 * JOBZ = 'V', LDZ >= max(1,N). 00080 * 00081 * WORK (workspace) COMPLEX*16 array, dimension (max(1, 2*N-1)) 00082 * 00083 * RWORK (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2)) 00084 * 00085 * INFO (output) INTEGER 00086 * = 0: successful exit 00087 * < 0: if INFO = -i, the i-th argument had an illegal value 00088 * > 0: ZPPTRF or ZHPEV returned an error code: 00089 * <= N: if INFO = i, ZHPEV failed to converge; 00090 * i off-diagonal elements of an intermediate 00091 * tridiagonal form did not convergeto zero; 00092 * > N: if INFO = N + i, for 1 <= i <= n, then the leading 00093 * minor of order i of B is not positive definite. 00094 * The factorization of B could not be completed and 00095 * no eigenvalues or eigenvectors were computed. 00096 * 00097 * ===================================================================== 00098 * 00099 * .. Local Scalars .. 00100 LOGICAL UPPER, WANTZ 00101 CHARACTER TRANS 00102 INTEGER J, NEIG 00103 * .. 00104 * .. External Functions .. 00105 LOGICAL LSAME 00106 EXTERNAL LSAME 00107 * .. 00108 * .. External Subroutines .. 00109 EXTERNAL XERBLA, ZHPEV, ZHPGST, ZPPTRF, ZTPMV, ZTPSV 00110 * .. 00111 * .. Executable Statements .. 00112 * 00113 * Test the input parameters. 00114 * 00115 WANTZ = LSAME( JOBZ, 'V' ) 00116 UPPER = LSAME( UPLO, 'U' ) 00117 * 00118 INFO = 0 00119 IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN 00120 INFO = -1 00121 ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN 00122 INFO = -2 00123 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN 00124 INFO = -3 00125 ELSE IF( N.LT.0 ) THEN 00126 INFO = -4 00127 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN 00128 INFO = -9 00129 END IF 00130 IF( INFO.NE.0 ) THEN 00131 CALL XERBLA( 'ZHPGV ', -INFO ) 00132 RETURN 00133 END IF 00134 * 00135 * Quick return if possible 00136 * 00137 IF( N.EQ.0 ) 00138 $ RETURN 00139 * 00140 * Form a Cholesky factorization of B. 00141 * 00142 CALL ZPPTRF( UPLO, N, BP, INFO ) 00143 IF( INFO.NE.0 ) THEN 00144 INFO = N + INFO 00145 RETURN 00146 END IF 00147 * 00148 * Transform problem to standard eigenvalue problem and solve. 00149 * 00150 CALL ZHPGST( ITYPE, UPLO, N, AP, BP, INFO ) 00151 CALL ZHPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, RWORK, INFO ) 00152 * 00153 IF( WANTZ ) THEN 00154 * 00155 * Backtransform eigenvectors to the original problem. 00156 * 00157 NEIG = N 00158 IF( INFO.GT.0 ) 00159 $ NEIG = INFO - 1 00160 IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN 00161 * 00162 * For A*x=(lambda)*B*x and A*B*x=(lambda)*x; 00163 * backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y 00164 * 00165 IF( UPPER ) THEN 00166 TRANS = 'N' 00167 ELSE 00168 TRANS = 'C' 00169 END IF 00170 * 00171 DO 10 J = 1, NEIG 00172 CALL ZTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ), 00173 $ 1 ) 00174 10 CONTINUE 00175 * 00176 ELSE IF( ITYPE.EQ.3 ) THEN 00177 * 00178 * For B*A*x=(lambda)*x; 00179 * backtransform eigenvectors: x = L*y or U**H *y 00180 * 00181 IF( UPPER ) THEN 00182 TRANS = 'C' 00183 ELSE 00184 TRANS = 'N' 00185 END IF 00186 * 00187 DO 20 J = 1, NEIG 00188 CALL ZTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ), 00189 $ 1 ) 00190 20 CONTINUE 00191 END IF 00192 END IF 00193 RETURN 00194 * 00195 * End of ZHPGV 00196 * 00197 END