LAPACK 3.3.1
Linear Algebra PACKage

zgelsd.f

Go to the documentation of this file.
00001       SUBROUTINE ZGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
00002      $                   WORK, LWORK, RWORK, IWORK, INFO )
00003 *
00004 *  -- LAPACK driver routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
00011       DOUBLE PRECISION   RCOND
00012 *     ..
00013 *     .. Array Arguments ..
00014       INTEGER            IWORK( * )
00015       DOUBLE PRECISION   RWORK( * ), S( * )
00016       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
00017 *     ..
00018 *
00019 *  Purpose
00020 *  =======
00021 *
00022 *  ZGELSD computes the minimum-norm solution to a real linear least
00023 *  squares problem:
00024 *      minimize 2-norm(| b - A*x |)
00025 *  using the singular value decomposition (SVD) of A. A is an M-by-N
00026 *  matrix which may be rank-deficient.
00027 *
00028 *  Several right hand side vectors b and solution vectors x can be
00029 *  handled in a single call; they are stored as the columns of the
00030 *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
00031 *  matrix X.
00032 *
00033 *  The problem is solved in three steps:
00034 *  (1) Reduce the coefficient matrix A to bidiagonal form with
00035 *      Householder tranformations, reducing the original problem
00036 *      into a "bidiagonal least squares problem" (BLS)
00037 *  (2) Solve the BLS using a divide and conquer approach.
00038 *  (3) Apply back all the Householder tranformations to solve
00039 *      the original least squares problem.
00040 *
00041 *  The effective rank of A is determined by treating as zero those
00042 *  singular values which are less than RCOND times the largest singular
00043 *  value.
00044 *
00045 *  The divide and conquer algorithm makes very mild assumptions about
00046 *  floating point arithmetic. It will work on machines with a guard
00047 *  digit in add/subtract, or on those binary machines without guard
00048 *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
00049 *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
00050 *  without guard digits, but we know of none.
00051 *
00052 *  Arguments
00053 *  =========
00054 *
00055 *  M       (input) INTEGER
00056 *          The number of rows of the matrix A. M >= 0.
00057 *
00058 *  N       (input) INTEGER
00059 *          The number of columns of the matrix A. N >= 0.
00060 *
00061 *  NRHS    (input) INTEGER
00062 *          The number of right hand sides, i.e., the number of columns
00063 *          of the matrices B and X. NRHS >= 0.
00064 *
00065 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
00066 *          On entry, the M-by-N matrix A.
00067 *          On exit, A has been destroyed.
00068 *
00069 *  LDA     (input) INTEGER
00070 *          The leading dimension of the array A. LDA >= max(1,M).
00071 *
00072 *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
00073 *          On entry, the M-by-NRHS right hand side matrix B.
00074 *          On exit, B is overwritten by the N-by-NRHS solution matrix X.
00075 *          If m >= n and RANK = n, the residual sum-of-squares for
00076 *          the solution in the i-th column is given by the sum of
00077 *          squares of the modulus of elements n+1:m in that column.
00078 *
00079 *  LDB     (input) INTEGER
00080 *          The leading dimension of the array B.  LDB >= max(1,M,N).
00081 *
00082 *  S       (output) DOUBLE PRECISION array, dimension (min(M,N))
00083 *          The singular values of A in decreasing order.
00084 *          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
00085 *
00086 *  RCOND   (input) DOUBLE PRECISION
00087 *          RCOND is used to determine the effective rank of A.
00088 *          Singular values S(i) <= RCOND*S(1) are treated as zero.
00089 *          If RCOND < 0, machine precision is used instead.
00090 *
00091 *  RANK    (output) INTEGER
00092 *          The effective rank of A, i.e., the number of singular values
00093 *          which are greater than RCOND*S(1).
00094 *
00095 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
00096 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
00097 *
00098 *  LWORK   (input) INTEGER
00099 *          The dimension of the array WORK. LWORK must be at least 1.
00100 *          The exact minimum amount of workspace needed depends on M,
00101 *          N and NRHS. As long as LWORK is at least
00102 *              2*N + N*NRHS
00103 *          if M is greater than or equal to N or
00104 *              2*M + M*NRHS
00105 *          if M is less than N, the code will execute correctly.
00106 *          For good performance, LWORK should generally be larger.
00107 *
00108 *          If LWORK = -1, then a workspace query is assumed; the routine
00109 *          only calculates the optimal size of the array WORK and the
00110 *          minimum sizes of the arrays RWORK and IWORK, and returns
00111 *          these values as the first entries of the WORK, RWORK and
00112 *          IWORK arrays, and no error message related to LWORK is issued
00113 *          by XERBLA.
00114 *
00115 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
00116 *          LRWORK >=
00117 *             10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
00118 *             MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
00119 *          if M is greater than or equal to N or
00120 *             10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
00121 *             MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
00122 *          if M is less than N, the code will execute correctly.
00123 *          SMLSIZ is returned by ILAENV and is equal to the maximum
00124 *          size of the subproblems at the bottom of the computation
00125 *          tree (usually about 25), and
00126 *             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
00127 *          On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK.
00128 *
00129 *  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
00130 *          LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),
00131 *          where MINMN = MIN( M,N ).
00132 *          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
00133 *
00134 *  INFO    (output) INTEGER
00135 *          = 0: successful exit
00136 *          < 0: if INFO = -i, the i-th argument had an illegal value.
00137 *          > 0:  the algorithm for computing the SVD failed to converge;
00138 *                if INFO = i, i off-diagonal elements of an intermediate
00139 *                bidiagonal form did not converge to zero.
00140 *
00141 *  Further Details
00142 *  ===============
00143 *
00144 *  Based on contributions by
00145 *     Ming Gu and Ren-Cang Li, Computer Science Division, University of
00146 *       California at Berkeley, USA
00147 *     Osni Marques, LBNL/NERSC, USA
00148 *
00149 *  =====================================================================
00150 *
00151 *     .. Parameters ..
00152       DOUBLE PRECISION   ZERO, ONE, TWO
00153       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
00154       COMPLEX*16         CZERO
00155       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
00156 *     ..
00157 *     .. Local Scalars ..
00158       LOGICAL            LQUERY
00159       INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
00160      $                   LDWORK, LIWORK, LRWORK, MAXMN, MAXWRK, MINMN,
00161      $                   MINWRK, MM, MNTHR, NLVL, NRWORK, NWORK, SMLSIZ
00162       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
00163 *     ..
00164 *     .. External Subroutines ..
00165       EXTERNAL           DLABAD, DLASCL, DLASET, XERBLA, ZGEBRD, ZGELQF,
00166      $                   ZGEQRF, ZLACPY, ZLALSD, ZLASCL, ZLASET, ZUNMBR,
00167      $                   ZUNMLQ, ZUNMQR
00168 *     ..
00169 *     .. External Functions ..
00170       INTEGER            ILAENV
00171       DOUBLE PRECISION   DLAMCH, ZLANGE
00172       EXTERNAL           ILAENV, DLAMCH, ZLANGE
00173 *     ..
00174 *     .. Intrinsic Functions ..
00175       INTRINSIC          INT, LOG, MAX, MIN, DBLE
00176 *     ..
00177 *     .. Executable Statements ..
00178 *
00179 *     Test the input arguments.
00180 *
00181       INFO = 0
00182       MINMN = MIN( M, N )
00183       MAXMN = MAX( M, N )
00184       LQUERY = ( LWORK.EQ.-1 )
00185       IF( M.LT.0 ) THEN
00186          INFO = -1
00187       ELSE IF( N.LT.0 ) THEN
00188          INFO = -2
00189       ELSE IF( NRHS.LT.0 ) THEN
00190          INFO = -3
00191       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
00192          INFO = -5
00193       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
00194          INFO = -7
00195       END IF
00196 *
00197 *     Compute workspace.
00198 *     (Note: Comments in the code beginning "Workspace:" describe the
00199 *     minimal amount of workspace needed at that point in the code,
00200 *     as well as the preferred amount for good performance.
00201 *     NB refers to the optimal block size for the immediately
00202 *     following subroutine, as returned by ILAENV.)
00203 *
00204       IF( INFO.EQ.0 ) THEN
00205          MINWRK = 1
00206          MAXWRK = 1
00207          LIWORK = 1
00208          LRWORK = 1
00209          IF( MINMN.GT.0 ) THEN
00210             SMLSIZ = ILAENV( 9, 'ZGELSD', ' ', 0, 0, 0, 0 )
00211             MNTHR = ILAENV( 6, 'ZGELSD', ' ', M, N, NRHS, -1 )
00212             NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ + 1 ) ) /
00213      $                  LOG( TWO ) ) + 1, 0 )
00214             LIWORK = 3*MINMN*NLVL + 11*MINMN
00215             MM = M
00216             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
00217 *
00218 *              Path 1a - overdetermined, with many more rows than
00219 *                        columns.
00220 *
00221                MM = N
00222                MAXWRK = MAX( MAXWRK, N*ILAENV( 1, 'ZGEQRF', ' ', M, N,
00223      $                       -1, -1 ) )
00224                MAXWRK = MAX( MAXWRK, NRHS*ILAENV( 1, 'ZUNMQR', 'LC', M,
00225      $                       NRHS, N, -1 ) )
00226             END IF
00227             IF( M.GE.N ) THEN
00228 *
00229 *              Path 1 - overdetermined or exactly determined.
00230 *
00231                LRWORK = 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
00232      $                  MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
00233                MAXWRK = MAX( MAXWRK, 2*N + ( MM + N )*ILAENV( 1,
00234      $                       'ZGEBRD', ' ', MM, N, -1, -1 ) )
00235                MAXWRK = MAX( MAXWRK, 2*N + NRHS*ILAENV( 1, 'ZUNMBR',
00236      $                       'QLC', MM, NRHS, N, -1 ) )
00237                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
00238      $                       'ZUNMBR', 'PLN', N, NRHS, N, -1 ) )
00239                MAXWRK = MAX( MAXWRK, 2*N + N*NRHS )
00240                MINWRK = MAX( 2*N + MM, 2*N + N*NRHS )
00241             END IF
00242             IF( N.GT.M ) THEN
00243                LRWORK = 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
00244      $                  MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
00245                IF( N.GE.MNTHR ) THEN
00246 *
00247 *                 Path 2a - underdetermined, with many more columns
00248 *                           than rows.
00249 *
00250                   MAXWRK = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1,
00251      $                     -1 )
00252                   MAXWRK = MAX( MAXWRK, M*M + 4*M + 2*M*ILAENV( 1,
00253      $                          'ZGEBRD', ' ', M, M, -1, -1 ) )
00254                   MAXWRK = MAX( MAXWRK, M*M + 4*M + NRHS*ILAENV( 1,
00255      $                          'ZUNMBR', 'QLC', M, NRHS, M, -1 ) )
00256                   MAXWRK = MAX( MAXWRK, M*M + 4*M + ( M - 1 )*ILAENV( 1,
00257      $                          'ZUNMLQ', 'LC', N, NRHS, M, -1 ) )
00258                   IF( NRHS.GT.1 ) THEN
00259                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
00260                   ELSE
00261                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
00262                   END IF
00263                   MAXWRK = MAX( MAXWRK, M*M + 4*M + M*NRHS )
00264 !     XXX: Ensure the Path 2a case below is triggered.  The workspace
00265 !     calculation should use queries for all routines eventually.
00266                   MAXWRK = MAX( MAXWRK,
00267      $                 4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
00268                ELSE
00269 *
00270 *                 Path 2 - underdetermined.
00271 *
00272                   MAXWRK = 2*M + ( N + M )*ILAENV( 1, 'ZGEBRD', ' ', M,
00273      $                     N, -1, -1 )
00274                   MAXWRK = MAX( MAXWRK, 2*M + NRHS*ILAENV( 1, 'ZUNMBR',
00275      $                          'QLC', M, NRHS, M, -1 ) )
00276                   MAXWRK = MAX( MAXWRK, 2*M + M*ILAENV( 1, 'ZUNMBR',
00277      $                          'PLN', N, NRHS, M, -1 ) )
00278                   MAXWRK = MAX( MAXWRK, 2*M + M*NRHS )
00279                END IF
00280                MINWRK = MAX( 2*M + N, 2*M + M*NRHS )
00281             END IF
00282          END IF
00283          MINWRK = MIN( MINWRK, MAXWRK )
00284          WORK( 1 ) = MAXWRK
00285          IWORK( 1 ) = LIWORK
00286          RWORK( 1 ) = LRWORK
00287 *
00288          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
00289             INFO = -12
00290          END IF
00291       END IF
00292 *
00293       IF( INFO.NE.0 ) THEN
00294          CALL XERBLA( 'ZGELSD', -INFO )
00295          RETURN
00296       ELSE IF( LQUERY ) THEN
00297          RETURN
00298       END IF
00299 *
00300 *     Quick return if possible.
00301 *
00302       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
00303          RANK = 0
00304          RETURN
00305       END IF
00306 *
00307 *     Get machine parameters.
00308 *
00309       EPS = DLAMCH( 'P' )
00310       SFMIN = DLAMCH( 'S' )
00311       SMLNUM = SFMIN / EPS
00312       BIGNUM = ONE / SMLNUM
00313       CALL DLABAD( SMLNUM, BIGNUM )
00314 *
00315 *     Scale A if max entry outside range [SMLNUM,BIGNUM].
00316 *
00317       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
00318       IASCL = 0
00319       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
00320 *
00321 *        Scale matrix norm up to SMLNUM
00322 *
00323          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
00324          IASCL = 1
00325       ELSE IF( ANRM.GT.BIGNUM ) THEN
00326 *
00327 *        Scale matrix norm down to BIGNUM.
00328 *
00329          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
00330          IASCL = 2
00331       ELSE IF( ANRM.EQ.ZERO ) THEN
00332 *
00333 *        Matrix all zero. Return zero solution.
00334 *
00335          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
00336          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
00337          RANK = 0
00338          GO TO 10
00339       END IF
00340 *
00341 *     Scale B if max entry outside range [SMLNUM,BIGNUM].
00342 *
00343       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
00344       IBSCL = 0
00345       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
00346 *
00347 *        Scale matrix norm up to SMLNUM.
00348 *
00349          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
00350          IBSCL = 1
00351       ELSE IF( BNRM.GT.BIGNUM ) THEN
00352 *
00353 *        Scale matrix norm down to BIGNUM.
00354 *
00355          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
00356          IBSCL = 2
00357       END IF
00358 *
00359 *     If M < N make sure B(M+1:N,:) = 0
00360 *
00361       IF( M.LT.N )
00362      $   CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
00363 *
00364 *     Overdetermined case.
00365 *
00366       IF( M.GE.N ) THEN
00367 *
00368 *        Path 1 - overdetermined or exactly determined.
00369 *
00370          MM = M
00371          IF( M.GE.MNTHR ) THEN
00372 *
00373 *           Path 1a - overdetermined, with many more rows than columns
00374 *
00375             MM = N
00376             ITAU = 1
00377             NWORK = ITAU + N
00378 *
00379 *           Compute A=Q*R.
00380 *           (RWorkspace: need N)
00381 *           (CWorkspace: need N, prefer N*NB)
00382 *
00383             CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
00384      $                   LWORK-NWORK+1, INFO )
00385 *
00386 *           Multiply B by transpose(Q).
00387 *           (RWorkspace: need N)
00388 *           (CWorkspace: need NRHS, prefer NRHS*NB)
00389 *
00390             CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
00391      $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
00392 *
00393 *           Zero out below R.
00394 *
00395             IF( N.GT.1 ) THEN
00396                CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
00397      $                      LDA )
00398             END IF
00399          END IF
00400 *
00401          ITAUQ = 1
00402          ITAUP = ITAUQ + N
00403          NWORK = ITAUP + N
00404          IE = 1
00405          NRWORK = IE + N
00406 *
00407 *        Bidiagonalize R in A.
00408 *        (RWorkspace: need N)
00409 *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
00410 *
00411          CALL ZGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
00412      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
00413      $                INFO )
00414 *
00415 *        Multiply B by transpose of left bidiagonalizing vectors of R.
00416 *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
00417 *
00418          CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
00419      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
00420 *
00421 *        Solve the bidiagonal least squares problem.
00422 *
00423          CALL ZLALSD( 'U', SMLSIZ, N, NRHS, S, RWORK( IE ), B, LDB,
00424      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
00425      $                IWORK, INFO )
00426          IF( INFO.NE.0 ) THEN
00427             GO TO 10
00428          END IF
00429 *
00430 *        Multiply B by right bidiagonalizing vectors of R.
00431 *
00432          CALL ZUNMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
00433      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
00434 *
00435       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
00436      $         MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN
00437 *
00438 *        Path 2a - underdetermined, with many more columns than rows
00439 *        and sufficient workspace for an efficient algorithm.
00440 *
00441          LDWORK = M
00442          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
00443      $       M*LDA+M+M*NRHS ) )LDWORK = LDA
00444          ITAU = 1
00445          NWORK = M + 1
00446 *
00447 *        Compute A=L*Q.
00448 *        (CWorkspace: need 2*M, prefer M+M*NB)
00449 *
00450          CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
00451      $                LWORK-NWORK+1, INFO )
00452          IL = NWORK
00453 *
00454 *        Copy L to WORK(IL), zeroing out above its diagonal.
00455 *
00456          CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
00457          CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
00458      $                LDWORK )
00459          ITAUQ = IL + LDWORK*M
00460          ITAUP = ITAUQ + M
00461          NWORK = ITAUP + M
00462          IE = 1
00463          NRWORK = IE + M
00464 *
00465 *        Bidiagonalize L in WORK(IL).
00466 *        (RWorkspace: need M)
00467 *        (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB)
00468 *
00469          CALL ZGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
00470      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
00471      $                LWORK-NWORK+1, INFO )
00472 *
00473 *        Multiply B by transpose of left bidiagonalizing vectors of L.
00474 *        (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
00475 *
00476          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
00477      $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
00478      $                LWORK-NWORK+1, INFO )
00479 *
00480 *        Solve the bidiagonal least squares problem.
00481 *
00482          CALL ZLALSD( 'U', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
00483      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
00484      $                IWORK, INFO )
00485          IF( INFO.NE.0 ) THEN
00486             GO TO 10
00487          END IF
00488 *
00489 *        Multiply B by right bidiagonalizing vectors of L.
00490 *
00491          CALL ZUNMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
00492      $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
00493      $                LWORK-NWORK+1, INFO )
00494 *
00495 *        Zero out below first M rows of B.
00496 *
00497          CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
00498          NWORK = ITAU + M
00499 *
00500 *        Multiply transpose(Q) by B.
00501 *        (CWorkspace: need NRHS, prefer NRHS*NB)
00502 *
00503          CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
00504      $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
00505 *
00506       ELSE
00507 *
00508 *        Path 2 - remaining underdetermined cases.
00509 *
00510          ITAUQ = 1
00511          ITAUP = ITAUQ + M
00512          NWORK = ITAUP + M
00513          IE = 1
00514          NRWORK = IE + M
00515 *
00516 *        Bidiagonalize A.
00517 *        (RWorkspace: need M)
00518 *        (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
00519 *
00520          CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
00521      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
00522      $                INFO )
00523 *
00524 *        Multiply B by transpose of left bidiagonalizing vectors.
00525 *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
00526 *
00527          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
00528      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
00529 *
00530 *        Solve the bidiagonal least squares problem.
00531 *
00532          CALL ZLALSD( 'L', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
00533      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
00534      $                IWORK, INFO )
00535          IF( INFO.NE.0 ) THEN
00536             GO TO 10
00537          END IF
00538 *
00539 *        Multiply B by right bidiagonalizing vectors of A.
00540 *
00541          CALL ZUNMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
00542      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
00543 *
00544       END IF
00545 *
00546 *     Undo scaling.
00547 *
00548       IF( IASCL.EQ.1 ) THEN
00549          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
00550          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
00551      $                INFO )
00552       ELSE IF( IASCL.EQ.2 ) THEN
00553          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
00554          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
00555      $                INFO )
00556       END IF
00557       IF( IBSCL.EQ.1 ) THEN
00558          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
00559       ELSE IF( IBSCL.EQ.2 ) THEN
00560          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
00561       END IF
00562 *
00563    10 CONTINUE
00564       WORK( 1 ) = MAXWRK
00565       IWORK( 1 ) = LIWORK
00566       RWORK( 1 ) = LRWORK
00567       RETURN
00568 *
00569 *     End of ZGELSD
00570 *
00571       END
 All Files Functions