LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE SPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID ) 00002 * 00003 * -- LAPACK test routine (version 3.1) -- 00004 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00005 * November 2006 00006 * 00007 * .. Scalar Arguments .. 00008 CHARACTER UPLO 00009 INTEGER LDA, LDAFAC, N 00010 REAL RESID 00011 * .. 00012 * .. Array Arguments .. 00013 REAL A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * ) 00014 * .. 00015 * 00016 * Purpose 00017 * ======= 00018 * 00019 * SPOT01 reconstructs a symmetric positive definite matrix A from 00020 * its L*L' or U'*U factorization and computes the residual 00021 * norm( L*L' - A ) / ( N * norm(A) * EPS ) or 00022 * norm( U'*U - A ) / ( N * norm(A) * EPS ), 00023 * where EPS is the machine epsilon. 00024 * 00025 * Arguments 00026 * ========== 00027 * 00028 * UPLO (input) CHARACTER*1 00029 * Specifies whether the upper or lower triangular part of the 00030 * symmetric matrix A is stored: 00031 * = 'U': Upper triangular 00032 * = 'L': Lower triangular 00033 * 00034 * N (input) INTEGER 00035 * The number of rows and columns of the matrix A. N >= 0. 00036 * 00037 * A (input) REAL array, dimension (LDA,N) 00038 * The original symmetric matrix A. 00039 * 00040 * LDA (input) INTEGER 00041 * The leading dimension of the array A. LDA >= max(1,N) 00042 * 00043 * AFAC (input/output) REAL array, dimension (LDAFAC,N) 00044 * On entry, the factor L or U from the L*L' or U'*U 00045 * factorization of A. 00046 * Overwritten with the reconstructed matrix, and then with the 00047 * difference L*L' - A (or U'*U - A). 00048 * 00049 * LDAFAC (input) INTEGER 00050 * The leading dimension of the array AFAC. LDAFAC >= max(1,N). 00051 * 00052 * RWORK (workspace) REAL array, dimension (N) 00053 * 00054 * RESID (output) REAL 00055 * If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) 00056 * If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) 00057 * 00058 * ===================================================================== 00059 * 00060 * .. Parameters .. 00061 REAL ZERO, ONE 00062 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) 00063 * .. 00064 * .. Local Scalars .. 00065 INTEGER I, J, K 00066 REAL ANORM, EPS, T 00067 * .. 00068 * .. External Functions .. 00069 LOGICAL LSAME 00070 REAL SDOT, SLAMCH, SLANSY 00071 EXTERNAL LSAME, SDOT, SLAMCH, SLANSY 00072 * .. 00073 * .. External Subroutines .. 00074 EXTERNAL SSCAL, SSYR, STRMV 00075 * .. 00076 * .. Intrinsic Functions .. 00077 INTRINSIC REAL 00078 * .. 00079 * .. Executable Statements .. 00080 * 00081 * Quick exit if N = 0. 00082 * 00083 IF( N.LE.0 ) THEN 00084 RESID = ZERO 00085 RETURN 00086 END IF 00087 * 00088 * Exit with RESID = 1/EPS if ANORM = 0. 00089 * 00090 EPS = SLAMCH( 'Epsilon' ) 00091 ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK ) 00092 IF( ANORM.LE.ZERO ) THEN 00093 RESID = ONE / EPS 00094 RETURN 00095 END IF 00096 * 00097 * Compute the product U'*U, overwriting U. 00098 * 00099 IF( LSAME( UPLO, 'U' ) ) THEN 00100 DO 10 K = N, 1, -1 00101 * 00102 * Compute the (K,K) element of the result. 00103 * 00104 T = SDOT( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 ) 00105 AFAC( K, K ) = T 00106 * 00107 * Compute the rest of column K. 00108 * 00109 CALL STRMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC, 00110 $ LDAFAC, AFAC( 1, K ), 1 ) 00111 * 00112 10 CONTINUE 00113 * 00114 * Compute the product L*L', overwriting L. 00115 * 00116 ELSE 00117 DO 20 K = N, 1, -1 00118 * 00119 * Add a multiple of column K of the factor L to each of 00120 * columns K+1 through N. 00121 * 00122 IF( K+1.LE.N ) 00123 $ CALL SSYR( 'Lower', N-K, ONE, AFAC( K+1, K ), 1, 00124 $ AFAC( K+1, K+1 ), LDAFAC ) 00125 * 00126 * Scale column K by the diagonal element. 00127 * 00128 T = AFAC( K, K ) 00129 CALL SSCAL( N-K+1, T, AFAC( K, K ), 1 ) 00130 * 00131 20 CONTINUE 00132 END IF 00133 * 00134 * Compute the difference L*L' - A (or U'*U - A). 00135 * 00136 IF( LSAME( UPLO, 'U' ) ) THEN 00137 DO 40 J = 1, N 00138 DO 30 I = 1, J 00139 AFAC( I, J ) = AFAC( I, J ) - A( I, J ) 00140 30 CONTINUE 00141 40 CONTINUE 00142 ELSE 00143 DO 60 J = 1, N 00144 DO 50 I = J, N 00145 AFAC( I, J ) = AFAC( I, J ) - A( I, J ) 00146 50 CONTINUE 00147 60 CONTINUE 00148 END IF 00149 * 00150 * Compute norm( L*U - A ) / ( N * norm(A) * EPS ) 00151 * 00152 RESID = SLANSY( '1', UPLO, N, AFAC, LDAFAC, RWORK ) 00153 * 00154 RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS 00155 * 00156 RETURN 00157 * 00158 * End of SPOT01 00159 * 00160 END