LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE DLAPMR( FORWRD, M, N, X, LDX, K ) 00002 IMPLICIT NONE 00003 * 00004 * Originally DLAPMT 00005 * -- LAPACK auxiliary routine (version 3.2) -- 00006 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00007 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00008 * November 2006 00009 * 00010 * Adapted to DLAPMR 00011 * July 2010 00012 * 00013 * .. Scalar Arguments .. 00014 LOGICAL FORWRD 00015 INTEGER LDX, M, N 00016 * .. 00017 * .. Array Arguments .. 00018 INTEGER K( * ) 00019 DOUBLE PRECISION X( LDX, * ) 00020 * .. 00021 * 00022 * Purpose 00023 * ======= 00024 * 00025 * DLAPMR rearranges the rows of the M by N matrix X as specified 00026 * by the permutation K(1),K(2),...,K(M) of the integers 1,...,M. 00027 * If FORWRD = .TRUE., forward permutation: 00028 * 00029 * X(K(I),*) is moved X(I,*) for I = 1,2,...,M. 00030 * 00031 * If FORWRD = .FALSE., backward permutation: 00032 * 00033 * X(I,*) is moved to X(K(I),*) for I = 1,2,...,M. 00034 * 00035 * Arguments 00036 * ========= 00037 * 00038 * FORWRD (input) LOGICAL 00039 * = .TRUE., forward permutation 00040 * = .FALSE., backward permutation 00041 * 00042 * M (input) INTEGER 00043 * The number of rows of the matrix X. M >= 0. 00044 * 00045 * N (input) INTEGER 00046 * The number of columns of the matrix X. N >= 0. 00047 * 00048 * X (input/output) DOUBLE PRECISION array, dimension (LDX,N) 00049 * On entry, the M by N matrix X. 00050 * On exit, X contains the permuted matrix X. 00051 * 00052 * LDX (input) INTEGER 00053 * The leading dimension of the array X, LDX >= MAX(1,M). 00054 * 00055 * K (input/output) INTEGER array, dimension (M) 00056 * On entry, K contains the permutation vector. K is used as 00057 * internal workspace, but reset to its original value on 00058 * output. 00059 * 00060 * ===================================================================== 00061 * 00062 * .. Local Scalars .. 00063 INTEGER I, IN, J, JJ 00064 DOUBLE PRECISION TEMP 00065 * .. 00066 * .. Executable Statements .. 00067 * 00068 IF( M.LE.1 ) 00069 $ RETURN 00070 * 00071 DO 10 I = 1, M 00072 K( I ) = -K( I ) 00073 10 CONTINUE 00074 * 00075 IF( FORWRD ) THEN 00076 * 00077 * Forward permutation 00078 * 00079 DO 50 I = 1, M 00080 * 00081 IF( K( I ).GT.0 ) 00082 $ GO TO 40 00083 * 00084 J = I 00085 K( J ) = -K( J ) 00086 IN = K( J ) 00087 * 00088 20 CONTINUE 00089 IF( K( IN ).GT.0 ) 00090 $ GO TO 40 00091 * 00092 DO 30 JJ = 1, N 00093 TEMP = X( J, JJ ) 00094 X( J, JJ ) = X( IN, JJ ) 00095 X( IN, JJ ) = TEMP 00096 30 CONTINUE 00097 * 00098 K( IN ) = -K( IN ) 00099 J = IN 00100 IN = K( IN ) 00101 GO TO 20 00102 * 00103 40 CONTINUE 00104 * 00105 50 CONTINUE 00106 * 00107 ELSE 00108 * 00109 * Backward permutation 00110 * 00111 DO 90 I = 1, M 00112 * 00113 IF( K( I ).GT.0 ) 00114 $ GO TO 80 00115 * 00116 K( I ) = -K( I ) 00117 J = K( I ) 00118 60 CONTINUE 00119 IF( J.EQ.I ) 00120 $ GO TO 80 00121 * 00122 DO 70 JJ = 1, N 00123 TEMP = X( I, JJ ) 00124 X( I, JJ ) = X( J, JJ ) 00125 X( J, JJ ) = TEMP 00126 70 CONTINUE 00127 * 00128 K( J ) = -K( J ) 00129 J = K( J ) 00130 GO TO 60 00131 * 00132 80 CONTINUE 00133 * 00134 90 CONTINUE 00135 * 00136 END IF 00137 * 00138 RETURN 00139 * 00140 * End of ZLAPMT 00141 * 00142 END 00143