LAPACK 3.3.1
Linear Algebra PACKage

zla_porpvgrw.f

Go to the documentation of this file.
00001       DOUBLE PRECISION FUNCTION ZLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF, 
00002      $                                        LDAF, WORK )
00003 *
00004 *     -- LAPACK routine (version 3.2.2)                                 --
00005 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
00006 *     -- Jason Riedy of Univ. of California Berkeley.                 --
00007 *     -- June 2010                                                    --
00008 *
00009 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
00010 *     -- Univ. of California Berkeley and NAG Ltd.                    --
00011 *
00012       IMPLICIT NONE
00013 *     ..
00014 *     .. Scalar Arguments ..
00015       CHARACTER*1        UPLO
00016       INTEGER            NCOLS, LDA, LDAF
00017 *     ..
00018 *     .. Array Arguments ..
00019       COMPLEX*16         A( LDA, * ), AF( LDAF, * )
00020       DOUBLE PRECISION   WORK( * )
00021 *     ..
00022 *
00023 *  Purpose
00024 *  =======
00025 * 
00026 *  ZLA_PORPVGRW computes the reciprocal pivot growth factor
00027 *  norm(A)/norm(U). The "max absolute element" norm is used. If this is
00028 *  much less than 1, the stability of the LU factorization of the
00029 *  (equilibrated) matrix A could be poor. This also means that the
00030 *  solution X, estimated condition numbers, and error bounds could be
00031 *  unreliable.
00032 *
00033 *  Arguments
00034 *  =========
00035 *
00036 *     UPLO    (input) CHARACTER*1
00037 *       = 'U':  Upper triangle of A is stored;
00038 *       = 'L':  Lower triangle of A is stored.
00039 *
00040 *     NCOLS   (input) INTEGER
00041 *     The number of columns of the matrix A. NCOLS >= 0.
00042 *
00043 *     A       (input) COMPLEX*16 array, dimension (LDA,N)
00044 *     On entry, the N-by-N matrix A.
00045 *
00046 *     LDA     (input) INTEGER
00047 *     The leading dimension of the array A.  LDA >= max(1,N).
00048 *
00049 *     AF      (input) COMPLEX*16 array, dimension (LDAF,N)
00050 *     The triangular factor U or L from the Cholesky factorization
00051 *     A = U**T*U or A = L*L**T, as computed by ZPOTRF.
00052 *
00053 *     LDAF    (input) INTEGER
00054 *     The leading dimension of the array AF.  LDAF >= max(1,N).
00055 *
00056 *     WORK    (input) COMPLEX*16 array, dimension (2*N)
00057 *
00058 *  =====================================================================
00059 *
00060 *     .. Local Scalars ..
00061       INTEGER            I, J
00062       DOUBLE PRECISION   AMAX, UMAX, RPVGRW
00063       LOGICAL            UPPER
00064       COMPLEX*16         ZDUM
00065 *     ..
00066 *     .. External Functions ..
00067       EXTERNAL           LSAME, ZLASET
00068       LOGICAL            LSAME
00069 *     ..
00070 *     .. Intrinsic Functions ..
00071       INTRINSIC          ABS, MAX, MIN, REAL, DIMAG
00072 *     ..
00073 *     .. Statement Functions ..
00074       DOUBLE PRECISION   CABS1
00075 *     ..
00076 *     .. Statement Function Definitions ..
00077       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
00078 *     ..
00079 *     .. Executable Statements ..
00080       UPPER = LSAME( 'Upper', UPLO )
00081 *
00082 *     DPOTRF will have factored only the NCOLSxNCOLS leading minor, so
00083 *     we restrict the growth search to that minor and use only the first
00084 *     2*NCOLS workspace entries.
00085 *
00086       RPVGRW = 1.0D+0
00087       DO I = 1, 2*NCOLS
00088          WORK( I ) = 0.0D+0
00089       END DO
00090 *
00091 *     Find the max magnitude entry of each column.
00092 *
00093       IF ( UPPER ) THEN
00094          DO J = 1, NCOLS
00095             DO I = 1, J
00096                WORK( NCOLS+J ) =
00097      $              MAX( CABS1( A( I, J ) ), WORK( NCOLS+J ) )
00098             END DO
00099          END DO
00100       ELSE
00101          DO J = 1, NCOLS
00102             DO I = J, NCOLS
00103                WORK( NCOLS+J ) =
00104      $              MAX( CABS1( A( I, J ) ), WORK( NCOLS+J ) )
00105             END DO
00106          END DO
00107       END IF
00108 *
00109 *     Now find the max magnitude entry of each column of the factor in
00110 *     AF.  No pivoting, so no permutations.
00111 *
00112       IF ( LSAME( 'Upper', UPLO ) ) THEN
00113          DO J = 1, NCOLS
00114             DO I = 1, J
00115                WORK( J ) = MAX( CABS1( AF( I, J ) ), WORK( J ) )
00116             END DO
00117          END DO
00118       ELSE
00119          DO J = 1, NCOLS
00120             DO I = J, NCOLS
00121                WORK( J ) = MAX( CABS1( AF( I, J ) ), WORK( J ) )
00122             END DO
00123          END DO
00124       END IF
00125 *
00126 *     Compute the *inverse* of the max element growth factor.  Dividing
00127 *     by zero would imply the largest entry of the factor's column is
00128 *     zero.  Than can happen when either the column of A is zero or
00129 *     massive pivots made the factor underflow to zero.  Neither counts
00130 *     as growth in itself, so simply ignore terms with zero
00131 *     denominators.
00132 *
00133       IF ( LSAME( 'Upper', UPLO ) ) THEN
00134          DO I = 1, NCOLS
00135             UMAX = WORK( I )
00136             AMAX = WORK( NCOLS+I )
00137             IF ( UMAX /= 0.0D+0 ) THEN
00138                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
00139             END IF
00140          END DO
00141       ELSE
00142          DO I = 1, NCOLS
00143             UMAX = WORK( I )
00144             AMAX = WORK( NCOLS+I )
00145             IF ( UMAX /= 0.0D+0 ) THEN
00146                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
00147             END IF
00148          END DO
00149       END IF
00150 
00151       ZLA_PORPVGRW = RPVGRW
00152       END
All Files Functions