LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE DPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO ) 00002 * 00003 * -- LAPACK PROTOTYPE routine (version 3.2.2) -- 00004 * Craig Lucas, University of Manchester / NAG Ltd. 00005 * October, 2008 00006 * 00007 * .. Scalar Arguments .. 00008 DOUBLE PRECISION TOL 00009 INTEGER INFO, LDA, N, RANK 00010 CHARACTER UPLO 00011 * .. 00012 * .. Array Arguments .. 00013 DOUBLE PRECISION A( LDA, * ), WORK( 2*N ) 00014 INTEGER PIV( N ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * DPSTF2 computes the Cholesky factorization with complete 00021 * pivoting of a real symmetric positive semidefinite matrix A. 00022 * 00023 * The factorization has the form 00024 * P**T * A * P = U**T * U , if UPLO = 'U', 00025 * P**T * A * P = L * L**T, if UPLO = 'L', 00026 * where U is an upper triangular matrix and L is lower triangular, and 00027 * P is stored as vector PIV. 00028 * 00029 * This algorithm does not attempt to check that A is positive 00030 * semidefinite. This version of the algorithm calls level 2 BLAS. 00031 * 00032 * Arguments 00033 * ========= 00034 * 00035 * UPLO (input) CHARACTER*1 00036 * Specifies whether the upper or lower triangular part of the 00037 * symmetric matrix A is stored. 00038 * = 'U': Upper triangular 00039 * = 'L': Lower triangular 00040 * 00041 * N (input) INTEGER 00042 * The order of the matrix A. N >= 0. 00043 * 00044 * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) 00045 * On entry, the symmetric matrix A. If UPLO = 'U', the leading 00046 * n by n upper triangular part of A contains the upper 00047 * triangular part of the matrix A, and the strictly lower 00048 * triangular part of A is not referenced. If UPLO = 'L', the 00049 * leading n by n lower triangular part of A contains the lower 00050 * triangular part of the matrix A, and the strictly upper 00051 * triangular part of A is not referenced. 00052 * 00053 * On exit, if INFO = 0, the factor U or L from the Cholesky 00054 * factorization as above. 00055 * 00056 * PIV (output) INTEGER array, dimension (N) 00057 * PIV is such that the nonzero entries are P( PIV(K), K ) = 1. 00058 * 00059 * RANK (output) INTEGER 00060 * The rank of A given by the number of steps the algorithm 00061 * completed. 00062 * 00063 * TOL (input) DOUBLE PRECISION 00064 * User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) ) 00065 * will be used. The algorithm terminates at the (K-1)st step 00066 * if the pivot <= TOL. 00067 * 00068 * LDA (input) INTEGER 00069 * The leading dimension of the array A. LDA >= max(1,N). 00070 * 00071 * WORK (workspace) DOUBLE PRECISION array, dimension (2*N) 00072 * Work space. 00073 * 00074 * INFO (output) INTEGER 00075 * < 0: If INFO = -K, the K-th argument had an illegal value, 00076 * = 0: algorithm completed successfully, and 00077 * > 0: the matrix A is either rank deficient with computed rank 00078 * as returned in RANK, or is indefinite. See Section 7 of 00079 * LAPACK Working Note #161 for further information. 00080 * 00081 * ===================================================================== 00082 * 00083 * .. Parameters .. 00084 DOUBLE PRECISION ONE, ZERO 00085 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 00086 * .. 00087 * .. Local Scalars .. 00088 DOUBLE PRECISION AJJ, DSTOP, DTEMP 00089 INTEGER I, ITEMP, J, PVT 00090 LOGICAL UPPER 00091 * .. 00092 * .. External Functions .. 00093 DOUBLE PRECISION DLAMCH 00094 LOGICAL LSAME, DISNAN 00095 EXTERNAL DLAMCH, LSAME, DISNAN 00096 * .. 00097 * .. External Subroutines .. 00098 EXTERNAL DGEMV, DSCAL, DSWAP, XERBLA 00099 * .. 00100 * .. Intrinsic Functions .. 00101 INTRINSIC MAX, SQRT, MAXLOC 00102 * .. 00103 * .. Executable Statements .. 00104 * 00105 * Test the input parameters 00106 * 00107 INFO = 0 00108 UPPER = LSAME( UPLO, 'U' ) 00109 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 00110 INFO = -1 00111 ELSE IF( N.LT.0 ) THEN 00112 INFO = -2 00113 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 00114 INFO = -4 00115 END IF 00116 IF( INFO.NE.0 ) THEN 00117 CALL XERBLA( 'DPSTF2', -INFO ) 00118 RETURN 00119 END IF 00120 * 00121 * Quick return if possible 00122 * 00123 IF( N.EQ.0 ) 00124 $ RETURN 00125 * 00126 * Initialize PIV 00127 * 00128 DO 100 I = 1, N 00129 PIV( I ) = I 00130 100 CONTINUE 00131 * 00132 * Compute stopping value 00133 * 00134 PVT = 1 00135 AJJ = A( PVT, PVT ) 00136 DO I = 2, N 00137 IF( A( I, I ).GT.AJJ ) THEN 00138 PVT = I 00139 AJJ = A( PVT, PVT ) 00140 END IF 00141 END DO 00142 IF( AJJ.EQ.ZERO.OR.DISNAN( AJJ ) ) THEN 00143 RANK = 0 00144 INFO = 1 00145 GO TO 170 00146 END IF 00147 * 00148 * Compute stopping value if not supplied 00149 * 00150 IF( TOL.LT.ZERO ) THEN 00151 DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ 00152 ELSE 00153 DSTOP = TOL 00154 END IF 00155 * 00156 * Set first half of WORK to zero, holds dot products 00157 * 00158 DO 110 I = 1, N 00159 WORK( I ) = 0 00160 110 CONTINUE 00161 * 00162 IF( UPPER ) THEN 00163 * 00164 * Compute the Cholesky factorization P**T * A * P = U**T * U 00165 * 00166 DO 130 J = 1, N 00167 * 00168 * Find pivot, test for exit, else swap rows and columns 00169 * Update dot products, compute possible pivots which are 00170 * stored in the second half of WORK 00171 * 00172 DO 120 I = J, N 00173 * 00174 IF( J.GT.1 ) THEN 00175 WORK( I ) = WORK( I ) + A( J-1, I )**2 00176 END IF 00177 WORK( N+I ) = A( I, I ) - WORK( I ) 00178 * 00179 120 CONTINUE 00180 * 00181 IF( J.GT.1 ) THEN 00182 ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 ) 00183 PVT = ITEMP + J - 1 00184 AJJ = WORK( N+PVT ) 00185 IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN 00186 A( J, J ) = AJJ 00187 GO TO 160 00188 END IF 00189 END IF 00190 * 00191 IF( J.NE.PVT ) THEN 00192 * 00193 * Pivot OK, so can now swap pivot rows and columns 00194 * 00195 A( PVT, PVT ) = A( J, J ) 00196 CALL DSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 ) 00197 IF( PVT.LT.N ) 00198 $ CALL DSWAP( N-PVT, A( J, PVT+1 ), LDA, 00199 $ A( PVT, PVT+1 ), LDA ) 00200 CALL DSWAP( PVT-J-1, A( J, J+1 ), LDA, A( J+1, PVT ), 1 ) 00201 * 00202 * Swap dot products and PIV 00203 * 00204 DTEMP = WORK( J ) 00205 WORK( J ) = WORK( PVT ) 00206 WORK( PVT ) = DTEMP 00207 ITEMP = PIV( PVT ) 00208 PIV( PVT ) = PIV( J ) 00209 PIV( J ) = ITEMP 00210 END IF 00211 * 00212 AJJ = SQRT( AJJ ) 00213 A( J, J ) = AJJ 00214 * 00215 * Compute elements J+1:N of row J 00216 * 00217 IF( J.LT.N ) THEN 00218 CALL DGEMV( 'Trans', J-1, N-J, -ONE, A( 1, J+1 ), LDA, 00219 $ A( 1, J ), 1, ONE, A( J, J+1 ), LDA ) 00220 CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA ) 00221 END IF 00222 * 00223 130 CONTINUE 00224 * 00225 ELSE 00226 * 00227 * Compute the Cholesky factorization P**T * A * P = L * L**T 00228 * 00229 DO 150 J = 1, N 00230 * 00231 * Find pivot, test for exit, else swap rows and columns 00232 * Update dot products, compute possible pivots which are 00233 * stored in the second half of WORK 00234 * 00235 DO 140 I = J, N 00236 * 00237 IF( J.GT.1 ) THEN 00238 WORK( I ) = WORK( I ) + A( I, J-1 )**2 00239 END IF 00240 WORK( N+I ) = A( I, I ) - WORK( I ) 00241 * 00242 140 CONTINUE 00243 * 00244 IF( J.GT.1 ) THEN 00245 ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 ) 00246 PVT = ITEMP + J - 1 00247 AJJ = WORK( N+PVT ) 00248 IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN 00249 A( J, J ) = AJJ 00250 GO TO 160 00251 END IF 00252 END IF 00253 * 00254 IF( J.NE.PVT ) THEN 00255 * 00256 * Pivot OK, so can now swap pivot rows and columns 00257 * 00258 A( PVT, PVT ) = A( J, J ) 00259 CALL DSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA ) 00260 IF( PVT.LT.N ) 00261 $ CALL DSWAP( N-PVT, A( PVT+1, J ), 1, A( PVT+1, PVT ), 00262 $ 1 ) 00263 CALL DSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ), LDA ) 00264 * 00265 * Swap dot products and PIV 00266 * 00267 DTEMP = WORK( J ) 00268 WORK( J ) = WORK( PVT ) 00269 WORK( PVT ) = DTEMP 00270 ITEMP = PIV( PVT ) 00271 PIV( PVT ) = PIV( J ) 00272 PIV( J ) = ITEMP 00273 END IF 00274 * 00275 AJJ = SQRT( AJJ ) 00276 A( J, J ) = AJJ 00277 * 00278 * Compute elements J+1:N of column J 00279 * 00280 IF( J.LT.N ) THEN 00281 CALL DGEMV( 'No Trans', N-J, J-1, -ONE, A( J+1, 1 ), LDA, 00282 $ A( J, 1 ), LDA, ONE, A( J+1, J ), 1 ) 00283 CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 ) 00284 END IF 00285 * 00286 150 CONTINUE 00287 * 00288 END IF 00289 * 00290 * Ran to completion, A has full rank 00291 * 00292 RANK = N 00293 * 00294 GO TO 170 00295 160 CONTINUE 00296 * 00297 * Rank is number of steps completed. Set INFO = 1 to signal 00298 * that the factorization cannot be used to solve a system. 00299 * 00300 RANK = J - 1 00301 INFO = 1 00302 * 00303 170 CONTINUE 00304 RETURN 00305 * 00306 * End of DPSTF2 00307 * 00308 END