LAPACK 3.3.1 Linear Algebra PACKage

# zla_porcond_c.f

Go to the documentation of this file.
```00001       DOUBLE PRECISION FUNCTION ZLA_PORCOND_C( UPLO, N, A, LDA, AF,
00002      \$                                         LDAF, C, CAPPLY, INFO,
00003      \$                                         WORK, RWORK )
00004 *
00005 *     -- LAPACK routine (version 3.2.1)                                 --
00006 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
00007 *     -- Jason Riedy of Univ. of California Berkeley.                 --
00008 *     -- April 2009                                                   --
00009 *
00010 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
00011 *     -- Univ. of California Berkeley and NAG Ltd.                    --
00012 *
00013       IMPLICIT NONE
00014 *     ..
00015 *     .. Scalar Arguments ..
00016       CHARACTER          UPLO
00017       LOGICAL            CAPPLY
00018       INTEGER            N, LDA, LDAF, INFO
00019 *     ..
00020 *     .. Array Arguments ..
00021       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * )
00022       DOUBLE PRECISION   C( * ), RWORK( * )
00023 *     ..
00024 *
00025 *  Purpose
00026 *  =======
00027 *
00028 *     ZLA_PORCOND_C Computes the infinity norm condition number of
00029 *     op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector
00030 *
00031 *  Arguments
00032 *  =========
00033 *
00034 *     UPLO    (input) CHARACTER*1
00035 *       = 'U':  Upper triangle of A is stored;
00036 *       = 'L':  Lower triangle of A is stored.
00037 *
00038 *     N       (input) INTEGER
00039 *     The number of linear equations, i.e., the order of the
00040 *     matrix A.  N >= 0.
00041 *
00042 *     A       (input) COMPLEX*16 array, dimension (LDA,N)
00043 *     On entry, the N-by-N matrix A
00044 *
00045 *     LDA     (input) INTEGER
00046 *     The leading dimension of the array A.  LDA >= max(1,N).
00047 *
00048 *     AF      (input) COMPLEX*16 array, dimension (LDAF,N)
00049 *     The triangular factor U or L from the Cholesky factorization
00050 *     A = U**H*U or A = L*L**H, as computed by ZPOTRF.
00051 *
00052 *     LDAF    (input) INTEGER
00053 *     The leading dimension of the array AF.  LDAF >= max(1,N).
00054 *
00055 *     C       (input) DOUBLE PRECISION array, dimension (N)
00056 *     The vector C in the formula op(A) * inv(diag(C)).
00057 *
00058 *     CAPPLY  (input) LOGICAL
00059 *     If .TRUE. then access the vector C in the formula above.
00060 *
00061 *     INFO    (output) INTEGER
00062 *       = 0:  Successful exit.
00063 *     i > 0:  The ith argument is invalid.
00064 *
00065 *     WORK    (input) COMPLEX*16 array, dimension (2*N).
00066 *     Workspace.
00067 *
00068 *     RWORK   (input) DOUBLE PRECISION array, dimension (N).
00069 *     Workspace.
00070 *
00071 *  =====================================================================
00072 *
00073 *     .. Local Scalars ..
00074       INTEGER            KASE
00075       DOUBLE PRECISION   AINVNM, ANORM, TMP
00076       INTEGER            I, J
00077       LOGICAL            UP
00078       COMPLEX*16         ZDUM
00079 *     ..
00080 *     .. Local Arrays ..
00081       INTEGER            ISAVE( 3 )
00082 *     ..
00083 *     .. External Functions ..
00084       LOGICAL            LSAME
00085       EXTERNAL           LSAME
00086 *     ..
00087 *     .. External Subroutines ..
00088       EXTERNAL           ZLACN2, ZPOTRS, XERBLA
00089 *     ..
00090 *     .. Intrinsic Functions ..
00091       INTRINSIC          ABS, MAX, REAL, DIMAG
00092 *     ..
00093 *     .. Statement Functions ..
00094       DOUBLE PRECISION CABS1
00095 *     ..
00096 *     .. Statement Function Definitions ..
00097       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
00098 *     ..
00099 *     .. Executable Statements ..
00100 *
00101       ZLA_PORCOND_C = 0.0D+0
00102 *
00103       INFO = 0
00104       IF( N.LT.0 ) THEN
00105          INFO = -2
00106       END IF
00107       IF( INFO.NE.0 ) THEN
00108          CALL XERBLA( 'ZLA_PORCOND_C', -INFO )
00109          RETURN
00110       END IF
00111       UP = .FALSE.
00112       IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
00113 *
00114 *     Compute norm of op(A)*op2(C).
00115 *
00116       ANORM = 0.0D+0
00117       IF ( UP ) THEN
00118          DO I = 1, N
00119             TMP = 0.0D+0
00120             IF ( CAPPLY ) THEN
00121                DO J = 1, I
00122                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
00123                END DO
00124                DO J = I+1, N
00125                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
00126                END DO
00127             ELSE
00128                DO J = 1, I
00129                   TMP = TMP + CABS1( A( J, I ) )
00130                END DO
00131                DO J = I+1, N
00132                   TMP = TMP + CABS1( A( I, J ) )
00133                END DO
00134             END IF
00135             RWORK( I ) = TMP
00136             ANORM = MAX( ANORM, TMP )
00137          END DO
00138       ELSE
00139          DO I = 1, N
00140             TMP = 0.0D+0
00141             IF ( CAPPLY ) THEN
00142                DO J = 1, I
00143                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
00144                END DO
00145                DO J = I+1, N
00146                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
00147                END DO
00148             ELSE
00149                DO J = 1, I
00150                   TMP = TMP + CABS1( A( I, J ) )
00151                END DO
00152                DO J = I+1, N
00153                   TMP = TMP + CABS1( A( J, I ) )
00154                END DO
00155             END IF
00156             RWORK( I ) = TMP
00157             ANORM = MAX( ANORM, TMP )
00158          END DO
00159       END IF
00160 *
00161 *     Quick return if possible.
00162 *
00163       IF( N.EQ.0 ) THEN
00164          ZLA_PORCOND_C = 1.0D+0
00165          RETURN
00166       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
00167          RETURN
00168       END IF
00169 *
00170 *     Estimate the norm of inv(op(A)).
00171 *
00172       AINVNM = 0.0D+0
00173 *
00174       KASE = 0
00175    10 CONTINUE
00176       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
00177       IF( KASE.NE.0 ) THEN
00178          IF( KASE.EQ.2 ) THEN
00179 *
00180 *           Multiply by R.
00181 *
00182             DO I = 1, N
00183                WORK( I ) = WORK( I ) * RWORK( I )
00184             END DO
00185 *
00186             IF ( UP ) THEN
00187                CALL ZPOTRS( 'U', N, 1, AF, LDAF,
00188      \$            WORK, N, INFO )
00189             ELSE
00190                CALL ZPOTRS( 'L', N, 1, AF, LDAF,
00191      \$            WORK, N, INFO )
00192             ENDIF
00193 *
00194 *           Multiply by inv(C).
00195 *
00196             IF ( CAPPLY ) THEN
00197                DO I = 1, N
00198                   WORK( I ) = WORK( I ) * C( I )
00199                END DO
00200             END IF
00201          ELSE
00202 *
00203 *           Multiply by inv(C**H).
00204 *
00205             IF ( CAPPLY ) THEN
00206                DO I = 1, N
00207                   WORK( I ) = WORK( I ) * C( I )
00208                END DO
00209             END IF
00210 *
00211             IF ( UP ) THEN
00212                CALL ZPOTRS( 'U', N, 1, AF, LDAF,
00213      \$            WORK, N, INFO )
00214             ELSE
00215                CALL ZPOTRS( 'L', N, 1, AF, LDAF,
00216      \$            WORK, N, INFO )
00217             END IF
00218 *
00219 *           Multiply by R.
00220 *
00221             DO I = 1, N
00222                WORK( I ) = WORK( I ) * RWORK( I )
00223             END DO
00224          END IF
00225          GO TO 10
00226       END IF
00227 *
00228 *     Compute the estimate of the reciprocal condition number.
00229 *
00230       IF( AINVNM .NE. 0.0D+0 )
00231      \$   ZLA_PORCOND_C = 1.0D+0 / AINVNM
00232 *
00233       RETURN
00234 *
00235       END
```