LAPACK 3.3.1
Linear Algebra PACKage
|
00001 DOUBLE PRECISION FUNCTION ZLANSY( NORM, UPLO, N, A, LDA, WORK ) 00002 * 00003 * -- LAPACK auxiliary routine (version 3.2) -- 00004 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00005 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 CHARACTER NORM, UPLO 00010 INTEGER LDA, N 00011 * .. 00012 * .. Array Arguments .. 00013 DOUBLE PRECISION WORK( * ) 00014 COMPLEX*16 A( LDA, * ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * ZLANSY returns the value of the one norm, or the Frobenius norm, or 00021 * the infinity norm, or the element of largest absolute value of a 00022 * complex symmetric matrix A. 00023 * 00024 * Description 00025 * =========== 00026 * 00027 * ZLANSY returns the value 00028 * 00029 * ZLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm' 00030 * ( 00031 * ( norm1(A), NORM = '1', 'O' or 'o' 00032 * ( 00033 * ( normI(A), NORM = 'I' or 'i' 00034 * ( 00035 * ( normF(A), NORM = 'F', 'f', 'E' or 'e' 00036 * 00037 * where norm1 denotes the one norm of a matrix (maximum column sum), 00038 * normI denotes the infinity norm of a matrix (maximum row sum) and 00039 * normF denotes the Frobenius norm of a matrix (square root of sum of 00040 * squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. 00041 * 00042 * Arguments 00043 * ========= 00044 * 00045 * NORM (input) CHARACTER*1 00046 * Specifies the value to be returned in ZLANSY as described 00047 * above. 00048 * 00049 * UPLO (input) CHARACTER*1 00050 * Specifies whether the upper or lower triangular part of the 00051 * symmetric matrix A is to be referenced. 00052 * = 'U': Upper triangular part of A is referenced 00053 * = 'L': Lower triangular part of A is referenced 00054 * 00055 * N (input) INTEGER 00056 * The order of the matrix A. N >= 0. When N = 0, ZLANSY is 00057 * set to zero. 00058 * 00059 * A (input) COMPLEX*16 array, dimension (LDA,N) 00060 * The symmetric matrix A. If UPLO = 'U', the leading n by n 00061 * upper triangular part of A contains the upper triangular part 00062 * of the matrix A, and the strictly lower triangular part of A 00063 * is not referenced. If UPLO = 'L', the leading n by n lower 00064 * triangular part of A contains the lower triangular part of 00065 * the matrix A, and the strictly upper triangular part of A is 00066 * not referenced. 00067 * 00068 * LDA (input) INTEGER 00069 * The leading dimension of the array A. LDA >= max(N,1). 00070 * 00071 * WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), 00072 * where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, 00073 * WORK is not referenced. 00074 * 00075 * ===================================================================== 00076 * 00077 * .. Parameters .. 00078 DOUBLE PRECISION ONE, ZERO 00079 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 00080 * .. 00081 * .. Local Scalars .. 00082 INTEGER I, J 00083 DOUBLE PRECISION ABSA, SCALE, SUM, VALUE 00084 * .. 00085 * .. External Functions .. 00086 LOGICAL LSAME 00087 EXTERNAL LSAME 00088 * .. 00089 * .. External Subroutines .. 00090 EXTERNAL ZLASSQ 00091 * .. 00092 * .. Intrinsic Functions .. 00093 INTRINSIC ABS, MAX, SQRT 00094 * .. 00095 * .. Executable Statements .. 00096 * 00097 IF( N.EQ.0 ) THEN 00098 VALUE = ZERO 00099 ELSE IF( LSAME( NORM, 'M' ) ) THEN 00100 * 00101 * Find max(abs(A(i,j))). 00102 * 00103 VALUE = ZERO 00104 IF( LSAME( UPLO, 'U' ) ) THEN 00105 DO 20 J = 1, N 00106 DO 10 I = 1, J 00107 VALUE = MAX( VALUE, ABS( A( I, J ) ) ) 00108 10 CONTINUE 00109 20 CONTINUE 00110 ELSE 00111 DO 40 J = 1, N 00112 DO 30 I = J, N 00113 VALUE = MAX( VALUE, ABS( A( I, J ) ) ) 00114 30 CONTINUE 00115 40 CONTINUE 00116 END IF 00117 ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR. 00118 $ ( NORM.EQ.'1' ) ) THEN 00119 * 00120 * Find normI(A) ( = norm1(A), since A is symmetric). 00121 * 00122 VALUE = ZERO 00123 IF( LSAME( UPLO, 'U' ) ) THEN 00124 DO 60 J = 1, N 00125 SUM = ZERO 00126 DO 50 I = 1, J - 1 00127 ABSA = ABS( A( I, J ) ) 00128 SUM = SUM + ABSA 00129 WORK( I ) = WORK( I ) + ABSA 00130 50 CONTINUE 00131 WORK( J ) = SUM + ABS( A( J, J ) ) 00132 60 CONTINUE 00133 DO 70 I = 1, N 00134 VALUE = MAX( VALUE, WORK( I ) ) 00135 70 CONTINUE 00136 ELSE 00137 DO 80 I = 1, N 00138 WORK( I ) = ZERO 00139 80 CONTINUE 00140 DO 100 J = 1, N 00141 SUM = WORK( J ) + ABS( A( J, J ) ) 00142 DO 90 I = J + 1, N 00143 ABSA = ABS( A( I, J ) ) 00144 SUM = SUM + ABSA 00145 WORK( I ) = WORK( I ) + ABSA 00146 90 CONTINUE 00147 VALUE = MAX( VALUE, SUM ) 00148 100 CONTINUE 00149 END IF 00150 ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN 00151 * 00152 * Find normF(A). 00153 * 00154 SCALE = ZERO 00155 SUM = ONE 00156 IF( LSAME( UPLO, 'U' ) ) THEN 00157 DO 110 J = 2, N 00158 CALL ZLASSQ( J-1, A( 1, J ), 1, SCALE, SUM ) 00159 110 CONTINUE 00160 ELSE 00161 DO 120 J = 1, N - 1 00162 CALL ZLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM ) 00163 120 CONTINUE 00164 END IF 00165 SUM = 2*SUM 00166 CALL ZLASSQ( N, A, LDA+1, SCALE, SUM ) 00167 VALUE = SCALE*SQRT( SUM ) 00168 END IF 00169 * 00170 ZLANSY = VALUE 00171 RETURN 00172 * 00173 * End of ZLANSY 00174 * 00175 END