LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE ZHBEV( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, 00002 $ RWORK, INFO ) 00003 * 00004 * -- LAPACK driver routine (version 3.2) -- 00005 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00006 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00007 * November 2006 00008 * 00009 * .. Scalar Arguments .. 00010 CHARACTER JOBZ, UPLO 00011 INTEGER INFO, KD, LDAB, LDZ, N 00012 * .. 00013 * .. Array Arguments .. 00014 DOUBLE PRECISION RWORK( * ), W( * ) 00015 COMPLEX*16 AB( LDAB, * ), WORK( * ), Z( LDZ, * ) 00016 * .. 00017 * 00018 * Purpose 00019 * ======= 00020 * 00021 * ZHBEV computes all the eigenvalues and, optionally, eigenvectors of 00022 * a complex Hermitian band matrix A. 00023 * 00024 * Arguments 00025 * ========= 00026 * 00027 * JOBZ (input) CHARACTER*1 00028 * = 'N': Compute eigenvalues only; 00029 * = 'V': Compute eigenvalues and eigenvectors. 00030 * 00031 * UPLO (input) CHARACTER*1 00032 * = 'U': Upper triangle of A is stored; 00033 * = 'L': Lower triangle of A is stored. 00034 * 00035 * N (input) INTEGER 00036 * The order of the matrix A. N >= 0. 00037 * 00038 * KD (input) INTEGER 00039 * The number of superdiagonals of the matrix A if UPLO = 'U', 00040 * or the number of subdiagonals if UPLO = 'L'. KD >= 0. 00041 * 00042 * AB (input/output) COMPLEX*16 array, dimension (LDAB, N) 00043 * On entry, the upper or lower triangle of the Hermitian band 00044 * matrix A, stored in the first KD+1 rows of the array. The 00045 * j-th column of A is stored in the j-th column of the array AB 00046 * as follows: 00047 * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; 00048 * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). 00049 * 00050 * On exit, AB is overwritten by values generated during the 00051 * reduction to tridiagonal form. If UPLO = 'U', the first 00052 * superdiagonal and the diagonal of the tridiagonal matrix T 00053 * are returned in rows KD and KD+1 of AB, and if UPLO = 'L', 00054 * the diagonal and first subdiagonal of T are returned in the 00055 * first two rows of AB. 00056 * 00057 * LDAB (input) INTEGER 00058 * The leading dimension of the array AB. LDAB >= KD + 1. 00059 * 00060 * W (output) DOUBLE PRECISION array, dimension (N) 00061 * If INFO = 0, the eigenvalues in ascending order. 00062 * 00063 * Z (output) COMPLEX*16 array, dimension (LDZ, N) 00064 * If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal 00065 * eigenvectors of the matrix A, with the i-th column of Z 00066 * holding the eigenvector associated with W(i). 00067 * If JOBZ = 'N', then Z is not referenced. 00068 * 00069 * LDZ (input) INTEGER 00070 * The leading dimension of the array Z. LDZ >= 1, and if 00071 * JOBZ = 'V', LDZ >= max(1,N). 00072 * 00073 * WORK (workspace) COMPLEX*16 array, dimension (N) 00074 * 00075 * RWORK (workspace) DOUBLE PRECISION array, dimension (max(1,3*N-2)) 00076 * 00077 * INFO (output) INTEGER 00078 * = 0: successful exit. 00079 * < 0: if INFO = -i, the i-th argument had an illegal value. 00080 * > 0: if INFO = i, the algorithm failed to converge; i 00081 * off-diagonal elements of an intermediate tridiagonal 00082 * form did not converge to zero. 00083 * 00084 * ===================================================================== 00085 * 00086 * .. Parameters .. 00087 DOUBLE PRECISION ZERO, ONE 00088 PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) 00089 * .. 00090 * .. Local Scalars .. 00091 LOGICAL LOWER, WANTZ 00092 INTEGER IINFO, IMAX, INDE, INDRWK, ISCALE 00093 DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, 00094 $ SMLNUM 00095 * .. 00096 * .. External Functions .. 00097 LOGICAL LSAME 00098 DOUBLE PRECISION DLAMCH, ZLANHB 00099 EXTERNAL LSAME, DLAMCH, ZLANHB 00100 * .. 00101 * .. External Subroutines .. 00102 EXTERNAL DSCAL, DSTERF, XERBLA, ZHBTRD, ZLASCL, ZSTEQR 00103 * .. 00104 * .. Intrinsic Functions .. 00105 INTRINSIC SQRT 00106 * .. 00107 * .. Executable Statements .. 00108 * 00109 * Test the input parameters. 00110 * 00111 WANTZ = LSAME( JOBZ, 'V' ) 00112 LOWER = LSAME( UPLO, 'L' ) 00113 * 00114 INFO = 0 00115 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN 00116 INFO = -1 00117 ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN 00118 INFO = -2 00119 ELSE IF( N.LT.0 ) THEN 00120 INFO = -3 00121 ELSE IF( KD.LT.0 ) THEN 00122 INFO = -4 00123 ELSE IF( LDAB.LT.KD+1 ) THEN 00124 INFO = -6 00125 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN 00126 INFO = -9 00127 END IF 00128 * 00129 IF( INFO.NE.0 ) THEN 00130 CALL XERBLA( 'ZHBEV ', -INFO ) 00131 RETURN 00132 END IF 00133 * 00134 * Quick return if possible 00135 * 00136 IF( N.EQ.0 ) 00137 $ RETURN 00138 * 00139 IF( N.EQ.1 ) THEN 00140 IF( LOWER ) THEN 00141 W( 1 ) = AB( 1, 1 ) 00142 ELSE 00143 W( 1 ) = AB( KD+1, 1 ) 00144 END IF 00145 IF( WANTZ ) 00146 $ Z( 1, 1 ) = ONE 00147 RETURN 00148 END IF 00149 * 00150 * Get machine constants. 00151 * 00152 SAFMIN = DLAMCH( 'Safe minimum' ) 00153 EPS = DLAMCH( 'Precision' ) 00154 SMLNUM = SAFMIN / EPS 00155 BIGNUM = ONE / SMLNUM 00156 RMIN = SQRT( SMLNUM ) 00157 RMAX = SQRT( BIGNUM ) 00158 * 00159 * Scale matrix to allowable range, if necessary. 00160 * 00161 ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK ) 00162 ISCALE = 0 00163 IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN 00164 ISCALE = 1 00165 SIGMA = RMIN / ANRM 00166 ELSE IF( ANRM.GT.RMAX ) THEN 00167 ISCALE = 1 00168 SIGMA = RMAX / ANRM 00169 END IF 00170 IF( ISCALE.EQ.1 ) THEN 00171 IF( LOWER ) THEN 00172 CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO ) 00173 ELSE 00174 CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO ) 00175 END IF 00176 END IF 00177 * 00178 * Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form. 00179 * 00180 INDE = 1 00181 CALL ZHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, RWORK( INDE ), Z, 00182 $ LDZ, WORK, IINFO ) 00183 * 00184 * For eigenvalues only, call DSTERF. For eigenvectors, call ZSTEQR. 00185 * 00186 IF( .NOT.WANTZ ) THEN 00187 CALL DSTERF( N, W, RWORK( INDE ), INFO ) 00188 ELSE 00189 INDRWK = INDE + N 00190 CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ, 00191 $ RWORK( INDRWK ), INFO ) 00192 END IF 00193 * 00194 * If matrix was scaled, then rescale eigenvalues appropriately. 00195 * 00196 IF( ISCALE.EQ.1 ) THEN 00197 IF( INFO.EQ.0 ) THEN 00198 IMAX = N 00199 ELSE 00200 IMAX = INFO - 1 00201 END IF 00202 CALL DSCAL( IMAX, ONE / SIGMA, W, 1 ) 00203 END IF 00204 * 00205 RETURN 00206 * 00207 * End of ZHBEV 00208 * 00209 END