LAPACK 3.3.1
Linear Algebra PACKage

zlatb4.f

Go to the documentation of this file.
00001       SUBROUTINE ZLATB4( PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE,
00002      $                   CNDNUM, DIST )
00003 *
00004 *  -- LAPACK test routine (version 3.1) --
00005 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
00006 *     November 2006
00007 *
00008 *     .. Scalar Arguments ..
00009       CHARACTER          DIST, TYPE
00010       CHARACTER*3        PATH
00011       INTEGER            IMAT, KL, KU, M, MODE, N
00012       DOUBLE PRECISION   ANORM, CNDNUM
00013 *     ..
00014 *
00015 *  Purpose
00016 *  =======
00017 *
00018 *  ZLATB4 sets parameters for the matrix generator based on the type of
00019 *  matrix to be generated.
00020 *
00021 *  Arguments
00022 *  =========
00023 *
00024 *  PATH    (input) CHARACTER*3
00025 *          The LAPACK path name.
00026 *
00027 *  IMAT    (input) INTEGER
00028 *          An integer key describing which matrix to generate for this
00029 *          path.
00030 *
00031 *  M       (input) INTEGER
00032 *          The number of rows in the matrix to be generated.
00033 *
00034 *  N       (input) INTEGER
00035 *          The number of columns in the matrix to be generated.
00036 *
00037 *  TYPE    (output) CHARACTER*1
00038 *          The type of the matrix to be generated:
00039 *          = 'S':  symmetric matrix
00040 *          = 'P':  symmetric positive (semi)definite matrix
00041 *          = 'N':  nonsymmetric matrix
00042 *
00043 *  KL      (output) INTEGER
00044 *          The lower band width of the matrix to be generated.
00045 *
00046 *  KU      (output) INTEGER
00047 *          The upper band width of the matrix to be generated.
00048 *
00049 *  ANORM   (output) DOUBLE PRECISION
00050 *          The desired norm of the matrix to be generated.  The diagonal
00051 *          matrix of singular values or eigenvalues is scaled by this
00052 *          value.
00053 *
00054 *  MODE    (output) INTEGER
00055 *          A key indicating how to choose the vector of eigenvalues.
00056 *
00057 *  CNDNUM  (output) DOUBLE PRECISION
00058 *          The desired condition number.
00059 *
00060 *  DIST    (output) CHARACTER*1
00061 *          The type of distribution to be used by the random number
00062 *          generator.
00063 *
00064 *  =====================================================================
00065 *
00066 *     .. Parameters ..
00067       DOUBLE PRECISION   SHRINK, TENTH
00068       PARAMETER          ( SHRINK = 0.25D0, TENTH = 0.1D+0 )
00069       DOUBLE PRECISION   ONE
00070       PARAMETER          ( ONE = 1.0D+0 )
00071       DOUBLE PRECISION   TWO
00072       PARAMETER          ( TWO = 2.0D+0 )
00073 *     ..
00074 *     .. Local Scalars ..
00075       LOGICAL            FIRST
00076       CHARACTER*2        C2
00077       INTEGER            MAT
00078       DOUBLE PRECISION   BADC1, BADC2, EPS, LARGE, SMALL
00079 *     ..
00080 *     .. External Functions ..
00081       LOGICAL            LSAMEN
00082       DOUBLE PRECISION   DLAMCH
00083       EXTERNAL           LSAMEN, DLAMCH
00084 *     ..
00085 *     .. Intrinsic Functions ..
00086       INTRINSIC          ABS, MAX, SQRT
00087 *     ..
00088 *     .. External Subroutines ..
00089       EXTERNAL           DLABAD
00090 *     ..
00091 *     .. Save statement ..
00092       SAVE               EPS, SMALL, LARGE, BADC1, BADC2, FIRST
00093 *     ..
00094 *     .. Data statements ..
00095       DATA               FIRST / .TRUE. /
00096 *     ..
00097 *     .. Executable Statements ..
00098 *
00099 *     Set some constants for use in the subroutine.
00100 *
00101       IF( FIRST ) THEN
00102          FIRST = .FALSE.
00103          EPS = DLAMCH( 'Precision' )
00104          BADC2 = TENTH / EPS
00105          BADC1 = SQRT( BADC2 )
00106          SMALL = DLAMCH( 'Safe minimum' )
00107          LARGE = ONE / SMALL
00108 *
00109 *        If it looks like we're on a Cray, take the square root of
00110 *        SMALL and LARGE to avoid overflow and underflow problems.
00111 *
00112          CALL DLABAD( SMALL, LARGE )
00113          SMALL = SHRINK*( SMALL / EPS )
00114          LARGE = ONE / SMALL
00115       END IF
00116 *
00117       C2 = PATH( 2: 3 )
00118 *
00119 *     Set some parameters we don't plan to change.
00120 *
00121       DIST = 'S'
00122       MODE = 3
00123 *
00124 *     xQR, xLQ, xQL, xRQ:  Set parameters to generate a general
00125 *                          M x N matrix.
00126 *
00127       IF( LSAMEN( 2, C2, 'QR' ) .OR. LSAMEN( 2, C2, 'LQ' ) .OR.
00128      $    LSAMEN( 2, C2, 'QL' ) .OR. LSAMEN( 2, C2, 'RQ' ) ) THEN
00129 *
00130 *        Set TYPE, the type of matrix to be generated.
00131 *
00132          TYPE = 'N'
00133 *
00134 *        Set the lower and upper bandwidths.
00135 *
00136          IF( IMAT.EQ.1 ) THEN
00137             KL = 0
00138             KU = 0
00139          ELSE IF( IMAT.EQ.2 ) THEN
00140             KL = 0
00141             KU = MAX( N-1, 0 )
00142          ELSE IF( IMAT.EQ.3 ) THEN
00143             KL = MAX( M-1, 0 )
00144             KU = 0
00145          ELSE
00146             KL = MAX( M-1, 0 )
00147             KU = MAX( N-1, 0 )
00148          END IF
00149 *
00150 *        Set the condition number and norm.
00151 *
00152          IF( IMAT.EQ.5 ) THEN
00153             CNDNUM = BADC1
00154          ELSE IF( IMAT.EQ.6 ) THEN
00155             CNDNUM = BADC2
00156          ELSE
00157             CNDNUM = TWO
00158          END IF
00159 *
00160          IF( IMAT.EQ.7 ) THEN
00161             ANORM = SMALL
00162          ELSE IF( IMAT.EQ.8 ) THEN
00163             ANORM = LARGE
00164          ELSE
00165             ANORM = ONE
00166          END IF
00167 *
00168       ELSE IF( LSAMEN( 2, C2, 'GE' ) ) THEN
00169 *
00170 *        xGE:  Set parameters to generate a general M x N matrix.
00171 *
00172 *        Set TYPE, the type of matrix to be generated.
00173 *
00174          TYPE = 'N'
00175 *
00176 *        Set the lower and upper bandwidths.
00177 *
00178          IF( IMAT.EQ.1 ) THEN
00179             KL = 0
00180             KU = 0
00181          ELSE IF( IMAT.EQ.2 ) THEN
00182             KL = 0
00183             KU = MAX( N-1, 0 )
00184          ELSE IF( IMAT.EQ.3 ) THEN
00185             KL = MAX( M-1, 0 )
00186             KU = 0
00187          ELSE
00188             KL = MAX( M-1, 0 )
00189             KU = MAX( N-1, 0 )
00190          END IF
00191 *
00192 *        Set the condition number and norm.
00193 *
00194          IF( IMAT.EQ.8 ) THEN
00195             CNDNUM = BADC1
00196          ELSE IF( IMAT.EQ.9 ) THEN
00197             CNDNUM = BADC2
00198          ELSE
00199             CNDNUM = TWO
00200          END IF
00201 *
00202          IF( IMAT.EQ.10 ) THEN
00203             ANORM = SMALL
00204          ELSE IF( IMAT.EQ.11 ) THEN
00205             ANORM = LARGE
00206          ELSE
00207             ANORM = ONE
00208          END IF
00209 *
00210       ELSE IF( LSAMEN( 2, C2, 'GB' ) ) THEN
00211 *
00212 *        xGB:  Set parameters to generate a general banded matrix.
00213 *
00214 *        Set TYPE, the type of matrix to be generated.
00215 *
00216          TYPE = 'N'
00217 *
00218 *        Set the condition number and norm.
00219 *
00220          IF( IMAT.EQ.5 ) THEN
00221             CNDNUM = BADC1
00222          ELSE IF( IMAT.EQ.6 ) THEN
00223             CNDNUM = TENTH*BADC2
00224          ELSE
00225             CNDNUM = TWO
00226          END IF
00227 *
00228          IF( IMAT.EQ.7 ) THEN
00229             ANORM = SMALL
00230          ELSE IF( IMAT.EQ.8 ) THEN
00231             ANORM = LARGE
00232          ELSE
00233             ANORM = ONE
00234          END IF
00235 *
00236       ELSE IF( LSAMEN( 2, C2, 'GT' ) ) THEN
00237 *
00238 *        xGT:  Set parameters to generate a general tridiagonal matrix.
00239 *
00240 *        Set TYPE, the type of matrix to be generated.
00241 *
00242          TYPE = 'N'
00243 *
00244 *        Set the lower and upper bandwidths.
00245 *
00246          IF( IMAT.EQ.1 ) THEN
00247             KL = 0
00248          ELSE
00249             KL = 1
00250          END IF
00251          KU = KL
00252 *
00253 *        Set the condition number and norm.
00254 *
00255          IF( IMAT.EQ.3 ) THEN
00256             CNDNUM = BADC1
00257          ELSE IF( IMAT.EQ.4 ) THEN
00258             CNDNUM = BADC2
00259          ELSE
00260             CNDNUM = TWO
00261          END IF
00262 *
00263          IF( IMAT.EQ.5 .OR. IMAT.EQ.11 ) THEN
00264             ANORM = SMALL
00265          ELSE IF( IMAT.EQ.6 .OR. IMAT.EQ.12 ) THEN
00266             ANORM = LARGE
00267          ELSE
00268             ANORM = ONE
00269          END IF
00270 *
00271       ELSE IF( LSAMEN( 2, C2, 'PO' ) .OR. LSAMEN( 2, C2, 'PP' ) .OR.
00272      $         LSAMEN( 2, C2, 'HE' ) .OR. LSAMEN( 2, C2, 'HP' ) .OR.
00273      $         LSAMEN( 2, C2, 'SY' ) .OR. LSAMEN( 2, C2, 'SP' ) ) THEN
00274 *
00275 *        xPO, xPP, xHE, xHP, xSY, xSP: Set parameters to generate a
00276 *        symmetric or Hermitian matrix.
00277 *
00278 *        Set TYPE, the type of matrix to be generated.
00279 *
00280          TYPE = C2( 1: 1 )
00281 *
00282 *        Set the lower and upper bandwidths.
00283 *
00284          IF( IMAT.EQ.1 ) THEN
00285             KL = 0
00286          ELSE
00287             KL = MAX( N-1, 0 )
00288          END IF
00289          KU = KL
00290 *
00291 *        Set the condition number and norm.
00292 *
00293          IF( IMAT.EQ.6 ) THEN
00294             CNDNUM = BADC1
00295          ELSE IF( IMAT.EQ.7 ) THEN
00296             CNDNUM = BADC2
00297          ELSE
00298             CNDNUM = TWO
00299          END IF
00300 *
00301          IF( IMAT.EQ.8 ) THEN
00302             ANORM = SMALL
00303          ELSE IF( IMAT.EQ.9 ) THEN
00304             ANORM = LARGE
00305          ELSE
00306             ANORM = ONE
00307          END IF
00308 *
00309       ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN
00310 *
00311 *        xPB:  Set parameters to generate a symmetric band matrix.
00312 *
00313 *        Set TYPE, the type of matrix to be generated.
00314 *
00315          TYPE = 'P'
00316 *
00317 *        Set the norm and condition number.
00318 *
00319          IF( IMAT.EQ.5 ) THEN
00320             CNDNUM = BADC1
00321          ELSE IF( IMAT.EQ.6 ) THEN
00322             CNDNUM = BADC2
00323          ELSE
00324             CNDNUM = TWO
00325          END IF
00326 *
00327          IF( IMAT.EQ.7 ) THEN
00328             ANORM = SMALL
00329          ELSE IF( IMAT.EQ.8 ) THEN
00330             ANORM = LARGE
00331          ELSE
00332             ANORM = ONE
00333          END IF
00334 *
00335       ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN
00336 *
00337 *        xPT:  Set parameters to generate a symmetric positive definite
00338 *        tridiagonal matrix.
00339 *
00340          TYPE = 'P'
00341          IF( IMAT.EQ.1 ) THEN
00342             KL = 0
00343          ELSE
00344             KL = 1
00345          END IF
00346          KU = KL
00347 *
00348 *        Set the condition number and norm.
00349 *
00350          IF( IMAT.EQ.3 ) THEN
00351             CNDNUM = BADC1
00352          ELSE IF( IMAT.EQ.4 ) THEN
00353             CNDNUM = BADC2
00354          ELSE
00355             CNDNUM = TWO
00356          END IF
00357 *
00358          IF( IMAT.EQ.5 .OR. IMAT.EQ.11 ) THEN
00359             ANORM = SMALL
00360          ELSE IF( IMAT.EQ.6 .OR. IMAT.EQ.12 ) THEN
00361             ANORM = LARGE
00362          ELSE
00363             ANORM = ONE
00364          END IF
00365 *
00366       ELSE IF( LSAMEN( 2, C2, 'TR' ) .OR. LSAMEN( 2, C2, 'TP' ) ) THEN
00367 *
00368 *        xTR, xTP:  Set parameters to generate a triangular matrix
00369 *
00370 *        Set TYPE, the type of matrix to be generated.
00371 *
00372          TYPE = 'N'
00373 *
00374 *        Set the lower and upper bandwidths.
00375 *
00376          MAT = ABS( IMAT )
00377          IF( MAT.EQ.1 .OR. MAT.EQ.7 ) THEN
00378             KL = 0
00379             KU = 0
00380          ELSE IF( IMAT.LT.0 ) THEN
00381             KL = MAX( N-1, 0 )
00382             KU = 0
00383          ELSE
00384             KL = 0
00385             KU = MAX( N-1, 0 )
00386          END IF
00387 *
00388 *        Set the condition number and norm.
00389 *
00390          IF( MAT.EQ.3 .OR. MAT.EQ.9 ) THEN
00391             CNDNUM = BADC1
00392          ELSE IF( MAT.EQ.4 .OR. MAT.EQ.10 ) THEN
00393             CNDNUM = BADC2
00394          ELSE
00395             CNDNUM = TWO
00396          END IF
00397 *
00398          IF( MAT.EQ.5 ) THEN
00399             ANORM = SMALL
00400          ELSE IF( MAT.EQ.6 ) THEN
00401             ANORM = LARGE
00402          ELSE
00403             ANORM = ONE
00404          END IF
00405 *
00406       ELSE IF( LSAMEN( 2, C2, 'TB' ) ) THEN
00407 *
00408 *        xTB:  Set parameters to generate a triangular band matrix.
00409 *
00410 *        Set TYPE, the type of matrix to be generated.
00411 *
00412          TYPE = 'N'
00413 *
00414 *        Set the norm and condition number.
00415 *
00416          IF( IMAT.EQ.2 .OR. IMAT.EQ.8 ) THEN
00417             CNDNUM = BADC1
00418          ELSE IF( IMAT.EQ.3 .OR. IMAT.EQ.9 ) THEN
00419             CNDNUM = BADC2
00420          ELSE
00421             CNDNUM = TWO
00422          END IF
00423 *
00424          IF( IMAT.EQ.4 ) THEN
00425             ANORM = SMALL
00426          ELSE IF( IMAT.EQ.5 ) THEN
00427             ANORM = LARGE
00428          ELSE
00429             ANORM = ONE
00430          END IF
00431       END IF
00432       IF( N.LE.1 )
00433      $   CNDNUM = ONE
00434 *
00435       RETURN
00436 *
00437 *     End of ZLATB4
00438 *
00439       END
 All Files Functions