LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE ZTPTRI( UPLO, DIAG, N, AP, INFO ) 00002 * 00003 * -- LAPACK routine (version 3.2) -- 00004 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00005 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 CHARACTER DIAG, UPLO 00010 INTEGER INFO, N 00011 * .. 00012 * .. Array Arguments .. 00013 COMPLEX*16 AP( * ) 00014 * .. 00015 * 00016 * Purpose 00017 * ======= 00018 * 00019 * ZTPTRI computes the inverse of a complex upper or lower triangular 00020 * matrix A stored in packed format. 00021 * 00022 * Arguments 00023 * ========= 00024 * 00025 * UPLO (input) CHARACTER*1 00026 * = 'U': A is upper triangular; 00027 * = 'L': A is lower triangular. 00028 * 00029 * DIAG (input) CHARACTER*1 00030 * = 'N': A is non-unit triangular; 00031 * = 'U': A is unit triangular. 00032 * 00033 * N (input) INTEGER 00034 * The order of the matrix A. N >= 0. 00035 * 00036 * AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) 00037 * On entry, the upper or lower triangular matrix A, stored 00038 * columnwise in a linear array. The j-th column of A is stored 00039 * in the array AP as follows: 00040 * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; 00041 * if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n. 00042 * See below for further details. 00043 * On exit, the (triangular) inverse of the original matrix, in 00044 * the same packed storage format. 00045 * 00046 * INFO (output) INTEGER 00047 * = 0: successful exit 00048 * < 0: if INFO = -i, the i-th argument had an illegal value 00049 * > 0: if INFO = i, A(i,i) is exactly zero. The triangular 00050 * matrix is singular and its inverse can not be computed. 00051 * 00052 * Further Details 00053 * =============== 00054 * 00055 * A triangular matrix A can be transferred to packed storage using one 00056 * of the following program segments: 00057 * 00058 * UPLO = 'U': UPLO = 'L': 00059 * 00060 * JC = 1 JC = 1 00061 * DO 2 J = 1, N DO 2 J = 1, N 00062 * DO 1 I = 1, J DO 1 I = J, N 00063 * AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J) 00064 * 1 CONTINUE 1 CONTINUE 00065 * JC = JC + J JC = JC + N - J + 1 00066 * 2 CONTINUE 2 CONTINUE 00067 * 00068 * ===================================================================== 00069 * 00070 * .. Parameters .. 00071 COMPLEX*16 ONE, ZERO 00072 PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ), 00073 $ ZERO = ( 0.0D+0, 0.0D+0 ) ) 00074 * .. 00075 * .. Local Scalars .. 00076 LOGICAL NOUNIT, UPPER 00077 INTEGER J, JC, JCLAST, JJ 00078 COMPLEX*16 AJJ 00079 * .. 00080 * .. External Functions .. 00081 LOGICAL LSAME 00082 EXTERNAL LSAME 00083 * .. 00084 * .. External Subroutines .. 00085 EXTERNAL XERBLA, ZSCAL, ZTPMV 00086 * .. 00087 * .. Executable Statements .. 00088 * 00089 * Test the input parameters. 00090 * 00091 INFO = 0 00092 UPPER = LSAME( UPLO, 'U' ) 00093 NOUNIT = LSAME( DIAG, 'N' ) 00094 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 00095 INFO = -1 00096 ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN 00097 INFO = -2 00098 ELSE IF( N.LT.0 ) THEN 00099 INFO = -3 00100 END IF 00101 IF( INFO.NE.0 ) THEN 00102 CALL XERBLA( 'ZTPTRI', -INFO ) 00103 RETURN 00104 END IF 00105 * 00106 * Check for singularity if non-unit. 00107 * 00108 IF( NOUNIT ) THEN 00109 IF( UPPER ) THEN 00110 JJ = 0 00111 DO 10 INFO = 1, N 00112 JJ = JJ + INFO 00113 IF( AP( JJ ).EQ.ZERO ) 00114 $ RETURN 00115 10 CONTINUE 00116 ELSE 00117 JJ = 1 00118 DO 20 INFO = 1, N 00119 IF( AP( JJ ).EQ.ZERO ) 00120 $ RETURN 00121 JJ = JJ + N - INFO + 1 00122 20 CONTINUE 00123 END IF 00124 INFO = 0 00125 END IF 00126 * 00127 IF( UPPER ) THEN 00128 * 00129 * Compute inverse of upper triangular matrix. 00130 * 00131 JC = 1 00132 DO 30 J = 1, N 00133 IF( NOUNIT ) THEN 00134 AP( JC+J-1 ) = ONE / AP( JC+J-1 ) 00135 AJJ = -AP( JC+J-1 ) 00136 ELSE 00137 AJJ = -ONE 00138 END IF 00139 * 00140 * Compute elements 1:j-1 of j-th column. 00141 * 00142 CALL ZTPMV( 'Upper', 'No transpose', DIAG, J-1, AP, 00143 $ AP( JC ), 1 ) 00144 CALL ZSCAL( J-1, AJJ, AP( JC ), 1 ) 00145 JC = JC + J 00146 30 CONTINUE 00147 * 00148 ELSE 00149 * 00150 * Compute inverse of lower triangular matrix. 00151 * 00152 JC = N*( N+1 ) / 2 00153 DO 40 J = N, 1, -1 00154 IF( NOUNIT ) THEN 00155 AP( JC ) = ONE / AP( JC ) 00156 AJJ = -AP( JC ) 00157 ELSE 00158 AJJ = -ONE 00159 END IF 00160 IF( J.LT.N ) THEN 00161 * 00162 * Compute elements j+1:n of j-th column. 00163 * 00164 CALL ZTPMV( 'Lower', 'No transpose', DIAG, N-J, 00165 $ AP( JCLAST ), AP( JC+1 ), 1 ) 00166 CALL ZSCAL( N-J, AJJ, AP( JC+1 ), 1 ) 00167 END IF 00168 JCLAST = JC 00169 JC = JC - N + J - 2 00170 40 CONTINUE 00171 END IF 00172 * 00173 RETURN 00174 * 00175 * End of ZTPTRI 00176 * 00177 END