LAPACK 3.3.0
|
00001 SUBROUTINE CDRVSY( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, 00002 $ A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, 00003 $ NOUT ) 00004 * 00005 * -- LAPACK test routine (version 3.2) -- 00006 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00007 * November 2006 00008 * 00009 * .. Scalar Arguments .. 00010 LOGICAL TSTERR 00011 INTEGER NMAX, NN, NOUT, NRHS 00012 REAL THRESH 00013 * .. 00014 * .. Array Arguments .. 00015 LOGICAL DOTYPE( * ) 00016 INTEGER IWORK( * ), NVAL( * ) 00017 REAL RWORK( * ) 00018 COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), 00019 $ WORK( * ), X( * ), XACT( * ) 00020 * .. 00021 * 00022 * Purpose 00023 * ======= 00024 * 00025 * CDRVSY tests the driver routines CSYSV, -SVX, and -SVXX. 00026 * 00027 * Note that this file is used only when the XBLAS are available, 00028 * otherwise cdrvsy.f defines this subroutine. 00029 * 00030 * Arguments 00031 * ========= 00032 * 00033 * DOTYPE (input) LOGICAL array, dimension (NTYPES) 00034 * The matrix types to be used for testing. Matrices of type j 00035 * (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = 00036 * .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. 00037 * 00038 * NN (input) INTEGER 00039 * The number of values of N contained in the vector NVAL. 00040 * 00041 * NVAL (input) INTEGER array, dimension (NN) 00042 * The values of the matrix dimension N. 00043 * 00044 * NRHS (input) INTEGER 00045 * The number of right hand side vectors to be generated for 00046 * each linear system. 00047 * 00048 * THRESH (input) REAL 00049 * The threshold value for the test ratios. A result is 00050 * included in the output file if RESULT >= THRESH. To have 00051 * every test ratio printed, use THRESH = 0. 00052 * 00053 * TSTERR (input) LOGICAL 00054 * Flag that indicates whether error exits are to be tested. 00055 * 00056 * NMAX (input) INTEGER 00057 * The maximum value permitted for N, used in dimensioning the 00058 * work arrays. 00059 * 00060 * A (workspace) COMPLEX array, dimension (NMAX*NMAX) 00061 * 00062 * AFAC (workspace) COMPLEX array, dimension (NMAX*NMAX) 00063 * 00064 * AINV (workspace) COMPLEX array, dimension (NMAX*NMAX) 00065 * 00066 * B (workspace) COMPLEX array, dimension (NMAX*NRHS) 00067 * 00068 * X (workspace) COMPLEX array, dimension (NMAX*NRHS) 00069 * 00070 * XACT (workspace) COMPLEX array, dimension (NMAX*NRHS) 00071 * 00072 * WORK (workspace) COMPLEX array, dimension 00073 * (NMAX*max(2,NRHS)) 00074 * 00075 * RWORK (workspace) REAL array, dimension (NMAX+2*NRHS) 00076 * 00077 * IWORK (workspace) INTEGER array, dimension (NMAX) 00078 * 00079 * NOUT (input) INTEGER 00080 * The unit number for output. 00081 * 00082 * ===================================================================== 00083 * 00084 * .. Parameters .. 00085 REAL ONE, ZERO 00086 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 00087 INTEGER NTYPES, NTESTS 00088 PARAMETER ( NTYPES = 11, NTESTS = 6 ) 00089 INTEGER NFACT 00090 PARAMETER ( NFACT = 2 ) 00091 * .. 00092 * .. Local Scalars .. 00093 LOGICAL ZEROT 00094 CHARACTER DIST, EQUED, FACT, TYPE, UPLO, XTYPE 00095 CHARACTER*3 PATH 00096 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO, 00097 $ IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N, 00098 $ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT, 00099 $ N_ERR_BNDS 00100 REAL AINVNM, ANORM, CNDNUM, RCOND, RCONDC, 00101 $ RPVGRW_SVXX 00102 * .. 00103 * .. Local Arrays .. 00104 CHARACTER FACTS( NFACT ), UPLOS( 2 ) 00105 INTEGER ISEED( 4 ), ISEEDY( 4 ) 00106 REAL RESULT( NTESTS ), BERR( NRHS ), 00107 $ ERRBNDS_N( NRHS, 3 ), ERRBNDS_C( NRHS, 3 ) 00108 * .. 00109 * .. External Functions .. 00110 REAL CLANSY, SGET06 00111 EXTERNAL CLANSY, SGET06 00112 * .. 00113 * .. External Subroutines .. 00114 EXTERNAL ALADHD, ALAERH, ALASVM, CERRVX, CGET04, CLACPY, 00115 $ CLARHS, CLASET, CLATB4, CLATMS, CLATSY, CPOT05, 00116 $ CSYSV, CSYSVX, CSYT01, CSYT02, CSYTRF, CSYTRI2, 00117 $ XLAENV, CSYSVXX 00118 * .. 00119 * .. Scalars in Common .. 00120 LOGICAL LERR, OK 00121 CHARACTER*32 SRNAMT 00122 INTEGER INFOT, NUNIT 00123 * .. 00124 * .. Common blocks .. 00125 COMMON / INFOC / INFOT, NUNIT, OK, LERR 00126 COMMON / SRNAMC / SRNAMT 00127 * .. 00128 * .. Intrinsic Functions .. 00129 INTRINSIC CMPLX, MAX, MIN 00130 * .. 00131 * .. Data statements .. 00132 DATA ISEEDY / 1988, 1989, 1990, 1991 / 00133 DATA UPLOS / 'U', 'L' / , FACTS / 'F', 'N' / 00134 * .. 00135 * .. Executable Statements .. 00136 * 00137 * Initialize constants and the random number seed. 00138 * 00139 PATH( 1: 1 ) = 'Complex precision' 00140 PATH( 2: 3 ) = 'SY' 00141 NRUN = 0 00142 NFAIL = 0 00143 NERRS = 0 00144 DO 10 I = 1, 4 00145 ISEED( I ) = ISEEDY( I ) 00146 10 CONTINUE 00147 LWORK = MAX( 2*NMAX, NMAX*NRHS ) 00148 * 00149 * Test the error exits 00150 * 00151 IF( TSTERR ) 00152 $ CALL CERRVX( PATH, NOUT ) 00153 INFOT = 0 00154 * 00155 * Set the block size and minimum block size for testing. 00156 * 00157 NB = 1 00158 NBMIN = 2 00159 CALL XLAENV( 1, NB ) 00160 CALL XLAENV( 2, NBMIN ) 00161 * 00162 * Do for each value of N in NVAL 00163 * 00164 DO 180 IN = 1, NN 00165 N = NVAL( IN ) 00166 LDA = MAX( N, 1 ) 00167 XTYPE = 'N' 00168 NIMAT = NTYPES 00169 IF( N.LE.0 ) 00170 $ NIMAT = 1 00171 * 00172 DO 170 IMAT = 1, NIMAT 00173 * 00174 * Do the tests only if DOTYPE( IMAT ) is true. 00175 * 00176 IF( .NOT.DOTYPE( IMAT ) ) 00177 $ GO TO 170 00178 * 00179 * Skip types 3, 4, 5, or 6 if the matrix size is too small. 00180 * 00181 ZEROT = IMAT.GE.3 .AND. IMAT.LE.6 00182 IF( ZEROT .AND. N.LT.IMAT-2 ) 00183 $ GO TO 170 00184 * 00185 * Do first for UPLO = 'U', then for UPLO = 'L' 00186 * 00187 DO 160 IUPLO = 1, 2 00188 UPLO = UPLOS( IUPLO ) 00189 * 00190 IF( IMAT.NE.NTYPES ) THEN 00191 * 00192 * Set up parameters with CLATB4 and generate a test 00193 * matrix with CLATMS. 00194 * 00195 CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, 00196 $ MODE, CNDNUM, DIST ) 00197 * 00198 SRNAMT = 'CLATMS' 00199 CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, 00200 $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, 00201 $ WORK, INFO ) 00202 * 00203 * Check error code from CLATMS. 00204 * 00205 IF( INFO.NE.0 ) THEN 00206 CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N, 00207 $ -1, -1, -1, IMAT, NFAIL, NERRS, NOUT ) 00208 GO TO 160 00209 END IF 00210 * 00211 * For types 3-6, zero one or more rows and columns of 00212 * the matrix to test that INFO is returned correctly. 00213 * 00214 IF( ZEROT ) THEN 00215 IF( IMAT.EQ.3 ) THEN 00216 IZERO = 1 00217 ELSE IF( IMAT.EQ.4 ) THEN 00218 IZERO = N 00219 ELSE 00220 IZERO = N / 2 + 1 00221 END IF 00222 * 00223 IF( IMAT.LT.6 ) THEN 00224 * 00225 * Set row and column IZERO to zero. 00226 * 00227 IF( IUPLO.EQ.1 ) THEN 00228 IOFF = ( IZERO-1 )*LDA 00229 DO 20 I = 1, IZERO - 1 00230 A( IOFF+I ) = ZERO 00231 20 CONTINUE 00232 IOFF = IOFF + IZERO 00233 DO 30 I = IZERO, N 00234 A( IOFF ) = ZERO 00235 IOFF = IOFF + LDA 00236 30 CONTINUE 00237 ELSE 00238 IOFF = IZERO 00239 DO 40 I = 1, IZERO - 1 00240 A( IOFF ) = ZERO 00241 IOFF = IOFF + LDA 00242 40 CONTINUE 00243 IOFF = IOFF - IZERO 00244 DO 50 I = IZERO, N 00245 A( IOFF+I ) = ZERO 00246 50 CONTINUE 00247 END IF 00248 ELSE 00249 IF( IUPLO.EQ.1 ) THEN 00250 * 00251 * Set the first IZERO rows to zero. 00252 * 00253 IOFF = 0 00254 DO 70 J = 1, N 00255 I2 = MIN( J, IZERO ) 00256 DO 60 I = 1, I2 00257 A( IOFF+I ) = ZERO 00258 60 CONTINUE 00259 IOFF = IOFF + LDA 00260 70 CONTINUE 00261 ELSE 00262 * 00263 * Set the last IZERO rows to zero. 00264 * 00265 IOFF = 0 00266 DO 90 J = 1, N 00267 I1 = MAX( J, IZERO ) 00268 DO 80 I = I1, N 00269 A( IOFF+I ) = ZERO 00270 80 CONTINUE 00271 IOFF = IOFF + LDA 00272 90 CONTINUE 00273 END IF 00274 END IF 00275 ELSE 00276 IZERO = 0 00277 END IF 00278 ELSE 00279 * 00280 * IMAT = NTYPES: Use a special block diagonal matrix to 00281 * test alternate code for the 2-by-2 blocks. 00282 * 00283 CALL CLATSY( UPLO, N, A, LDA, ISEED ) 00284 END IF 00285 * 00286 DO 150 IFACT = 1, NFACT 00287 * 00288 * Do first for FACT = 'F', then for other values. 00289 * 00290 FACT = FACTS( IFACT ) 00291 * 00292 * Compute the condition number for comparison with 00293 * the value returned by CSYSVX. 00294 * 00295 IF( ZEROT ) THEN 00296 IF( IFACT.EQ.1 ) 00297 $ GO TO 150 00298 RCONDC = ZERO 00299 * 00300 ELSE IF( IFACT.EQ.1 ) THEN 00301 * 00302 * Compute the 1-norm of A. 00303 * 00304 ANORM = CLANSY( '1', UPLO, N, A, LDA, RWORK ) 00305 * 00306 * Factor the matrix A. 00307 * 00308 CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) 00309 CALL CSYTRF( UPLO, N, AFAC, LDA, IWORK, WORK, 00310 $ LWORK, INFO ) 00311 * 00312 * Compute inv(A) and take its norm. 00313 * 00314 CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA ) 00315 LWORK = (N+NB+1)*(NB+3) 00316 CALL CSYTRI2( UPLO, N, AINV, LDA, IWORK, WORK, 00317 $ LWORK, INFO ) 00318 AINVNM = CLANSY( '1', UPLO, N, AINV, LDA, RWORK ) 00319 * 00320 * Compute the 1-norm condition number of A. 00321 * 00322 IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN 00323 RCONDC = ONE 00324 ELSE 00325 RCONDC = ( ONE / ANORM ) / AINVNM 00326 END IF 00327 END IF 00328 * 00329 * Form an exact solution and set the right hand side. 00330 * 00331 SRNAMT = 'CLARHS' 00332 CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU, 00333 $ NRHS, A, LDA, XACT, LDA, B, LDA, ISEED, 00334 $ INFO ) 00335 XTYPE = 'C' 00336 * 00337 * --- Test CSYSV --- 00338 * 00339 IF( IFACT.EQ.2 ) THEN 00340 CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) 00341 CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) 00342 * 00343 * Factor the matrix and solve the system using CSYSV. 00344 * 00345 SRNAMT = 'CSYSV ' 00346 CALL CSYSV( UPLO, N, NRHS, AFAC, LDA, IWORK, X, 00347 $ LDA, WORK, LWORK, INFO ) 00348 * 00349 * Adjust the expected value of INFO to account for 00350 * pivoting. 00351 * 00352 K = IZERO 00353 IF( K.GT.0 ) THEN 00354 100 CONTINUE 00355 IF( IWORK( K ).LT.0 ) THEN 00356 IF( IWORK( K ).NE.-K ) THEN 00357 K = -IWORK( K ) 00358 GO TO 100 00359 END IF 00360 ELSE IF( IWORK( K ).NE.K ) THEN 00361 K = IWORK( K ) 00362 GO TO 100 00363 END IF 00364 END IF 00365 * 00366 * Check error code from CSYSV . 00367 * 00368 IF( INFO.NE.K ) THEN 00369 CALL ALAERH( PATH, 'CSYSV ', INFO, K, UPLO, N, 00370 $ N, -1, -1, NRHS, IMAT, NFAIL, 00371 $ NERRS, NOUT ) 00372 GO TO 120 00373 ELSE IF( INFO.NE.0 ) THEN 00374 GO TO 120 00375 END IF 00376 * 00377 * Reconstruct matrix from factors and compute 00378 * residual. 00379 * 00380 CALL CSYT01( UPLO, N, A, LDA, AFAC, LDA, IWORK, 00381 $ AINV, LDA, RWORK, RESULT( 1 ) ) 00382 * 00383 * Compute residual of the computed solution. 00384 * 00385 CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00386 CALL CSYT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, 00387 $ LDA, RWORK, RESULT( 2 ) ) 00388 * 00389 * Check solution from generated exact solution. 00390 * 00391 CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00392 $ RESULT( 3 ) ) 00393 NT = 3 00394 * 00395 * Print information about the tests that did not pass 00396 * the threshold. 00397 * 00398 DO 110 K = 1, NT 00399 IF( RESULT( K ).GE.THRESH ) THEN 00400 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00401 $ CALL ALADHD( NOUT, PATH ) 00402 WRITE( NOUT, FMT = 9999 )'CSYSV ', UPLO, N, 00403 $ IMAT, K, RESULT( K ) 00404 NFAIL = NFAIL + 1 00405 END IF 00406 110 CONTINUE 00407 NRUN = NRUN + NT 00408 120 CONTINUE 00409 END IF 00410 * 00411 * --- Test CSYSVX --- 00412 * 00413 IF( IFACT.EQ.2 ) 00414 $ CALL CLASET( UPLO, N, N, CMPLX( ZERO ), 00415 $ CMPLX( ZERO ), AFAC, LDA ) 00416 CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ), 00417 $ CMPLX( ZERO ), X, LDA ) 00418 * 00419 * Solve the system and compute the condition number and 00420 * error bounds using CSYSVX. 00421 * 00422 SRNAMT = 'CSYSVX' 00423 CALL CSYSVX( FACT, UPLO, N, NRHS, A, LDA, AFAC, LDA, 00424 $ IWORK, B, LDA, X, LDA, RCOND, RWORK, 00425 $ RWORK( NRHS+1 ), WORK, LWORK, 00426 $ RWORK( 2*NRHS+1 ), INFO ) 00427 * 00428 * Adjust the expected value of INFO to account for 00429 * pivoting. 00430 * 00431 K = IZERO 00432 IF( K.GT.0 ) THEN 00433 130 CONTINUE 00434 IF( IWORK( K ).LT.0 ) THEN 00435 IF( IWORK( K ).NE.-K ) THEN 00436 K = -IWORK( K ) 00437 GO TO 130 00438 END IF 00439 ELSE IF( IWORK( K ).NE.K ) THEN 00440 K = IWORK( K ) 00441 GO TO 130 00442 END IF 00443 END IF 00444 * 00445 * Check the error code from CSYSVX. 00446 * 00447 IF( INFO.NE.K ) THEN 00448 CALL ALAERH( PATH, 'CSYSVX', INFO, K, FACT // UPLO, 00449 $ N, N, -1, -1, NRHS, IMAT, NFAIL, 00450 $ NERRS, NOUT ) 00451 GO TO 150 00452 END IF 00453 * 00454 IF( INFO.EQ.0 ) THEN 00455 IF( IFACT.GE.2 ) THEN 00456 * 00457 * Reconstruct matrix from factors and compute 00458 * residual. 00459 * 00460 CALL CSYT01( UPLO, N, A, LDA, AFAC, LDA, IWORK, 00461 $ AINV, LDA, RWORK( 2*NRHS+1 ), 00462 $ RESULT( 1 ) ) 00463 K1 = 1 00464 ELSE 00465 K1 = 2 00466 END IF 00467 * 00468 * Compute residual of the computed solution. 00469 * 00470 CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00471 CALL CSYT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, 00472 $ LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) ) 00473 * 00474 * Check solution from generated exact solution. 00475 * 00476 CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00477 $ RESULT( 3 ) ) 00478 * 00479 * Check the error bounds from iterative refinement. 00480 * 00481 CALL CPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA, 00482 $ XACT, LDA, RWORK, RWORK( NRHS+1 ), 00483 $ RESULT( 4 ) ) 00484 ELSE 00485 K1 = 6 00486 END IF 00487 * 00488 * Compare RCOND from CSYSVX with the computed value 00489 * in RCONDC. 00490 * 00491 RESULT( 6 ) = SGET06( RCOND, RCONDC ) 00492 * 00493 * Print information about the tests that did not pass 00494 * the threshold. 00495 * 00496 DO 140 K = K1, 6 00497 IF( RESULT( K ).GE.THRESH ) THEN 00498 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00499 $ CALL ALADHD( NOUT, PATH ) 00500 WRITE( NOUT, FMT = 9998 )'CSYSVX', FACT, UPLO, 00501 $ N, IMAT, K, RESULT( K ) 00502 NFAIL = NFAIL + 1 00503 END IF 00504 140 CONTINUE 00505 NRUN = NRUN + 7 - K1 00506 * 00507 * --- Test CSYSVXX --- 00508 * 00509 * Restore the matrices A and B. 00510 * 00511 IF( IFACT.EQ.2 ) 00512 $ CALL CLASET( UPLO, N, N, CMPLX( ZERO ), 00513 $ CMPLX( ZERO ), AFAC, LDA ) 00514 CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ), 00515 $ CMPLX( ZERO ), X, LDA ) 00516 * 00517 * Solve the system and compute the condition number 00518 * and error bounds using CSYSVXX. 00519 * 00520 SRNAMT = 'CSYSVXX' 00521 N_ERR_BNDS = 3 00522 EQUED = 'N' 00523 CALL CSYSVXX( FACT, UPLO, N, NRHS, A, LDA, AFAC, 00524 $ LDA, IWORK, EQUED, WORK( N+1 ), B, LDA, X, 00525 $ LDA, RCOND, RPVGRW_SVXX, BERR, N_ERR_BNDS, 00526 $ ERRBNDS_N, ERRBNDS_C, 0, ZERO, WORK, 00527 $ IWORK( N+1 ), INFO ) 00528 * 00529 * Adjust the expected value of INFO to account for 00530 * pivoting. 00531 * 00532 K = IZERO 00533 IF( K.GT.0 ) THEN 00534 135 CONTINUE 00535 IF( IWORK( K ).LT.0 ) THEN 00536 IF( IWORK( K ).NE.-K ) THEN 00537 K = -IWORK( K ) 00538 GO TO 135 00539 END IF 00540 ELSE IF( IWORK( K ).NE.K ) THEN 00541 K = IWORK( K ) 00542 GO TO 135 00543 END IF 00544 END IF 00545 * 00546 * Check the error code from CSYSVXX. 00547 * 00548 IF( INFO.NE.K ) THEN 00549 CALL ALAERH( PATH, 'CSYSVXX', INFO, K, 00550 $ FACT // UPLO, N, N, -1, -1, NRHS, IMAT, NFAIL, 00551 $ NERRS, NOUT ) 00552 GO TO 150 00553 END IF 00554 * 00555 IF( INFO.EQ.0 ) THEN 00556 IF( IFACT.GE.2 ) THEN 00557 * 00558 * Reconstruct matrix from factors and compute 00559 * residual. 00560 * 00561 CALL CSYT01( UPLO, N, A, LDA, AFAC, LDA, IWORK, 00562 $ AINV, LDA, RWORK(2*NRHS+1), 00563 $ RESULT( 1 ) ) 00564 K1 = 1 00565 ELSE 00566 K1 = 2 00567 END IF 00568 * 00569 * Compute residual of the computed solution. 00570 * 00571 CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00572 CALL CSYT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, 00573 $ LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) ) 00574 RESULT( 2 ) = 0.0 00575 * 00576 * Check solution from generated exact solution. 00577 * 00578 CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00579 $ RESULT( 3 ) ) 00580 * 00581 * Check the error bounds from iterative refinement. 00582 * 00583 CALL CPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA, 00584 $ XACT, LDA, RWORK, RWORK( NRHS+1 ), 00585 $ RESULT( 4 ) ) 00586 ELSE 00587 K1 = 6 00588 END IF 00589 * 00590 * Compare RCOND from CSYSVXX with the computed value 00591 * in RCONDC. 00592 * 00593 RESULT( 6 ) = SGET06( RCOND, RCONDC ) 00594 * 00595 * Print information about the tests that did not pass 00596 * the threshold. 00597 * 00598 DO 85 K = K1, 6 00599 IF( RESULT( K ).GE.THRESH ) THEN 00600 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00601 $ CALL ALADHD( NOUT, PATH ) 00602 WRITE( NOUT, FMT = 9998 )'CSYSVXX', 00603 $ FACT, UPLO, N, IMAT, K, 00604 $ RESULT( K ) 00605 NFAIL = NFAIL + 1 00606 END IF 00607 85 CONTINUE 00608 NRUN = NRUN + 7 - K1 00609 * 00610 150 CONTINUE 00611 * 00612 160 CONTINUE 00613 170 CONTINUE 00614 180 CONTINUE 00615 * 00616 * Print a summary of the results. 00617 * 00618 CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS ) 00619 * 00620 00621 * Test Error Bounds from CSYSVXX 00622 00623 CALL CEBCHVXX(THRESH, PATH) 00624 00625 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2, 00626 $ ', test ', I2, ', ratio =', G12.5 ) 00627 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5, 00628 $ ', type ', I2, ', test ', I2, ', ratio =', G12.5 ) 00629 RETURN 00630 * 00631 * End of CDRVSY 00632 * 00633 END