LAPACK 3.3.0

clatbs.f

Go to the documentation of this file.
00001       SUBROUTINE CLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
00002      $                   SCALE, CNORM, INFO )
00003 *
00004 *  -- LAPACK auxiliary routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       CHARACTER          DIAG, NORMIN, TRANS, UPLO
00011       INTEGER            INFO, KD, LDAB, N
00012       REAL               SCALE
00013 *     ..
00014 *     .. Array Arguments ..
00015       REAL               CNORM( * )
00016       COMPLEX            AB( LDAB, * ), X( * )
00017 *     ..
00018 *
00019 *  Purpose
00020 *  =======
00021 *
00022 *  CLATBS solves one of the triangular systems
00023 *
00024 *     A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b,
00025 *
00026 *  with scaling to prevent overflow, where A is an upper or lower
00027 *  triangular band matrix.  Here A' denotes the transpose of A, x and b
00028 *  are n-element vectors, and s is a scaling factor, usually less than
00029 *  or equal to 1, chosen so that the components of x will be less than
00030 *  the overflow threshold.  If the unscaled problem will not cause
00031 *  overflow, the Level 2 BLAS routine CTBSV is called.  If the matrix A
00032 *  is singular (A(j,j) = 0 for some j), then s is set to 0 and a
00033 *  non-trivial solution to A*x = 0 is returned.
00034 *
00035 *  Arguments
00036 *  =========
00037 *
00038 *  UPLO    (input) CHARACTER*1
00039 *          Specifies whether the matrix A is upper or lower triangular.
00040 *          = 'U':  Upper triangular
00041 *          = 'L':  Lower triangular
00042 *
00043 *  TRANS   (input) CHARACTER*1
00044 *          Specifies the operation applied to A.
00045 *          = 'N':  Solve A * x = s*b     (No transpose)
00046 *          = 'T':  Solve A**T * x = s*b  (Transpose)
00047 *          = 'C':  Solve A**H * x = s*b  (Conjugate transpose)
00048 *
00049 *  DIAG    (input) CHARACTER*1
00050 *          Specifies whether or not the matrix A is unit triangular.
00051 *          = 'N':  Non-unit triangular
00052 *          = 'U':  Unit triangular
00053 *
00054 *  NORMIN  (input) CHARACTER*1
00055 *          Specifies whether CNORM has been set or not.
00056 *          = 'Y':  CNORM contains the column norms on entry
00057 *          = 'N':  CNORM is not set on entry.  On exit, the norms will
00058 *                  be computed and stored in CNORM.
00059 *
00060 *  N       (input) INTEGER
00061 *          The order of the matrix A.  N >= 0.
00062 *
00063 *  KD      (input) INTEGER
00064 *          The number of subdiagonals or superdiagonals in the
00065 *          triangular matrix A.  KD >= 0.
00066 *
00067 *  AB      (input) COMPLEX array, dimension (LDAB,N)
00068 *          The upper or lower triangular band matrix A, stored in the
00069 *          first KD+1 rows of the array. The j-th column of A is stored
00070 *          in the j-th column of the array AB as follows:
00071 *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
00072 *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
00073 *
00074 *  LDAB    (input) INTEGER
00075 *          The leading dimension of the array AB.  LDAB >= KD+1.
00076 *
00077 *  X       (input/output) COMPLEX array, dimension (N)
00078 *          On entry, the right hand side b of the triangular system.
00079 *          On exit, X is overwritten by the solution vector x.
00080 *
00081 *  SCALE   (output) REAL
00082 *          The scaling factor s for the triangular system
00083 *             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b.
00084 *          If SCALE = 0, the matrix A is singular or badly scaled, and
00085 *          the vector x is an exact or approximate solution to A*x = 0.
00086 *
00087 *  CNORM   (input or output) REAL array, dimension (N)
00088 *
00089 *          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
00090 *          contains the norm of the off-diagonal part of the j-th column
00091 *          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
00092 *          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
00093 *          must be greater than or equal to the 1-norm.
00094 *
00095 *          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
00096 *          returns the 1-norm of the offdiagonal part of the j-th column
00097 *          of A.
00098 *
00099 *  INFO    (output) INTEGER
00100 *          = 0:  successful exit
00101 *          < 0:  if INFO = -k, the k-th argument had an illegal value
00102 *
00103 *  Further Details
00104 *  ======= =======
00105 *
00106 *  A rough bound on x is computed; if that is less than overflow, CTBSV
00107 *  is called, otherwise, specific code is used which checks for possible
00108 *  overflow or divide-by-zero at every operation.
00109 *
00110 *  A columnwise scheme is used for solving A*x = b.  The basic algorithm
00111 *  if A is lower triangular is
00112 *
00113 *       x[1:n] := b[1:n]
00114 *       for j = 1, ..., n
00115 *            x(j) := x(j) / A(j,j)
00116 *            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
00117 *       end
00118 *
00119 *  Define bounds on the components of x after j iterations of the loop:
00120 *     M(j) = bound on x[1:j]
00121 *     G(j) = bound on x[j+1:n]
00122 *  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
00123 *
00124 *  Then for iteration j+1 we have
00125 *     M(j+1) <= G(j) / | A(j+1,j+1) |
00126 *     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
00127 *            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
00128 *
00129 *  where CNORM(j+1) is greater than or equal to the infinity-norm of
00130 *  column j+1 of A, not counting the diagonal.  Hence
00131 *
00132 *     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
00133 *                  1<=i<=j
00134 *  and
00135 *
00136 *     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
00137 *                                   1<=i< j
00138 *
00139 *  Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTBSV if the
00140 *  reciprocal of the largest M(j), j=1,..,n, is larger than
00141 *  max(underflow, 1/overflow).
00142 *
00143 *  The bound on x(j) is also used to determine when a step in the
00144 *  columnwise method can be performed without fear of overflow.  If
00145 *  the computed bound is greater than a large constant, x is scaled to
00146 *  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
00147 *  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
00148 *
00149 *  Similarly, a row-wise scheme is used to solve A**T *x = b  or
00150 *  A**H *x = b.  The basic algorithm for A upper triangular is
00151 *
00152 *       for j = 1, ..., n
00153 *            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
00154 *       end
00155 *
00156 *  We simultaneously compute two bounds
00157 *       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
00158 *       M(j) = bound on x(i), 1<=i<=j
00159 *
00160 *  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
00161 *  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
00162 *  Then the bound on x(j) is
00163 *
00164 *       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
00165 *
00166 *            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
00167 *                      1<=i<=j
00168 *
00169 *  and we can safely call CTBSV if 1/M(n) and 1/G(n) are both greater
00170 *  than max(underflow, 1/overflow).
00171 *
00172 *  =====================================================================
00173 *
00174 *     .. Parameters ..
00175       REAL               ZERO, HALF, ONE, TWO
00176       PARAMETER          ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0,
00177      $                   TWO = 2.0E+0 )
00178 *     ..
00179 *     .. Local Scalars ..
00180       LOGICAL            NOTRAN, NOUNIT, UPPER
00181       INTEGER            I, IMAX, J, JFIRST, JINC, JLAST, JLEN, MAIND
00182       REAL               BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
00183      $                   XBND, XJ, XMAX
00184       COMPLEX            CSUMJ, TJJS, USCAL, ZDUM
00185 *     ..
00186 *     .. External Functions ..
00187       LOGICAL            LSAME
00188       INTEGER            ICAMAX, ISAMAX
00189       REAL               SCASUM, SLAMCH
00190       COMPLEX            CDOTC, CDOTU, CLADIV
00191       EXTERNAL           LSAME, ICAMAX, ISAMAX, SCASUM, SLAMCH, CDOTC,
00192      $                   CDOTU, CLADIV
00193 *     ..
00194 *     .. External Subroutines ..
00195       EXTERNAL           CAXPY, CSSCAL, CTBSV, SLABAD, SSCAL, XERBLA
00196 *     ..
00197 *     .. Intrinsic Functions ..
00198       INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL
00199 *     ..
00200 *     .. Statement Functions ..
00201       REAL               CABS1, CABS2
00202 *     ..
00203 *     .. Statement Function definitions ..
00204       CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
00205       CABS2( ZDUM ) = ABS( REAL( ZDUM ) / 2. ) +
00206      $                ABS( AIMAG( ZDUM ) / 2. )
00207 *     ..
00208 *     .. Executable Statements ..
00209 *
00210       INFO = 0
00211       UPPER = LSAME( UPLO, 'U' )
00212       NOTRAN = LSAME( TRANS, 'N' )
00213       NOUNIT = LSAME( DIAG, 'N' )
00214 *
00215 *     Test the input parameters.
00216 *
00217       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
00218          INFO = -1
00219       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
00220      $         LSAME( TRANS, 'C' ) ) THEN
00221          INFO = -2
00222       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
00223          INFO = -3
00224       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
00225      $         LSAME( NORMIN, 'N' ) ) THEN
00226          INFO = -4
00227       ELSE IF( N.LT.0 ) THEN
00228          INFO = -5
00229       ELSE IF( KD.LT.0 ) THEN
00230          INFO = -6
00231       ELSE IF( LDAB.LT.KD+1 ) THEN
00232          INFO = -8
00233       END IF
00234       IF( INFO.NE.0 ) THEN
00235          CALL XERBLA( 'CLATBS', -INFO )
00236          RETURN
00237       END IF
00238 *
00239 *     Quick return if possible
00240 *
00241       IF( N.EQ.0 )
00242      $   RETURN
00243 *
00244 *     Determine machine dependent parameters to control overflow.
00245 *
00246       SMLNUM = SLAMCH( 'Safe minimum' )
00247       BIGNUM = ONE / SMLNUM
00248       CALL SLABAD( SMLNUM, BIGNUM )
00249       SMLNUM = SMLNUM / SLAMCH( 'Precision' )
00250       BIGNUM = ONE / SMLNUM
00251       SCALE = ONE
00252 *
00253       IF( LSAME( NORMIN, 'N' ) ) THEN
00254 *
00255 *        Compute the 1-norm of each column, not including the diagonal.
00256 *
00257          IF( UPPER ) THEN
00258 *
00259 *           A is upper triangular.
00260 *
00261             DO 10 J = 1, N
00262                JLEN = MIN( KD, J-1 )
00263                CNORM( J ) = SCASUM( JLEN, AB( KD+1-JLEN, J ), 1 )
00264    10       CONTINUE
00265          ELSE
00266 *
00267 *           A is lower triangular.
00268 *
00269             DO 20 J = 1, N
00270                JLEN = MIN( KD, N-J )
00271                IF( JLEN.GT.0 ) THEN
00272                   CNORM( J ) = SCASUM( JLEN, AB( 2, J ), 1 )
00273                ELSE
00274                   CNORM( J ) = ZERO
00275                END IF
00276    20       CONTINUE
00277          END IF
00278       END IF
00279 *
00280 *     Scale the column norms by TSCAL if the maximum element in CNORM is
00281 *     greater than BIGNUM/2.
00282 *
00283       IMAX = ISAMAX( N, CNORM, 1 )
00284       TMAX = CNORM( IMAX )
00285       IF( TMAX.LE.BIGNUM*HALF ) THEN
00286          TSCAL = ONE
00287       ELSE
00288          TSCAL = HALF / ( SMLNUM*TMAX )
00289          CALL SSCAL( N, TSCAL, CNORM, 1 )
00290       END IF
00291 *
00292 *     Compute a bound on the computed solution vector to see if the
00293 *     Level 2 BLAS routine CTBSV can be used.
00294 *
00295       XMAX = ZERO
00296       DO 30 J = 1, N
00297          XMAX = MAX( XMAX, CABS2( X( J ) ) )
00298    30 CONTINUE
00299       XBND = XMAX
00300       IF( NOTRAN ) THEN
00301 *
00302 *        Compute the growth in A * x = b.
00303 *
00304          IF( UPPER ) THEN
00305             JFIRST = N
00306             JLAST = 1
00307             JINC = -1
00308             MAIND = KD + 1
00309          ELSE
00310             JFIRST = 1
00311             JLAST = N
00312             JINC = 1
00313             MAIND = 1
00314          END IF
00315 *
00316          IF( TSCAL.NE.ONE ) THEN
00317             GROW = ZERO
00318             GO TO 60
00319          END IF
00320 *
00321          IF( NOUNIT ) THEN
00322 *
00323 *           A is non-unit triangular.
00324 *
00325 *           Compute GROW = 1/G(j) and XBND = 1/M(j).
00326 *           Initially, G(0) = max{x(i), i=1,...,n}.
00327 *
00328             GROW = HALF / MAX( XBND, SMLNUM )
00329             XBND = GROW
00330             DO 40 J = JFIRST, JLAST, JINC
00331 *
00332 *              Exit the loop if the growth factor is too small.
00333 *
00334                IF( GROW.LE.SMLNUM )
00335      $            GO TO 60
00336 *
00337                TJJS = AB( MAIND, J )
00338                TJJ = CABS1( TJJS )
00339 *
00340                IF( TJJ.GE.SMLNUM ) THEN
00341 *
00342 *                 M(j) = G(j-1) / abs(A(j,j))
00343 *
00344                   XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
00345                ELSE
00346 *
00347 *                 M(j) could overflow, set XBND to 0.
00348 *
00349                   XBND = ZERO
00350                END IF
00351 *
00352                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
00353 *
00354 *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
00355 *
00356                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
00357                ELSE
00358 *
00359 *                 G(j) could overflow, set GROW to 0.
00360 *
00361                   GROW = ZERO
00362                END IF
00363    40       CONTINUE
00364             GROW = XBND
00365          ELSE
00366 *
00367 *           A is unit triangular.
00368 *
00369 *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
00370 *
00371             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
00372             DO 50 J = JFIRST, JLAST, JINC
00373 *
00374 *              Exit the loop if the growth factor is too small.
00375 *
00376                IF( GROW.LE.SMLNUM )
00377      $            GO TO 60
00378 *
00379 *              G(j) = G(j-1)*( 1 + CNORM(j) )
00380 *
00381                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
00382    50       CONTINUE
00383          END IF
00384    60    CONTINUE
00385 *
00386       ELSE
00387 *
00388 *        Compute the growth in A**T * x = b  or  A**H * x = b.
00389 *
00390          IF( UPPER ) THEN
00391             JFIRST = 1
00392             JLAST = N
00393             JINC = 1
00394             MAIND = KD + 1
00395          ELSE
00396             JFIRST = N
00397             JLAST = 1
00398             JINC = -1
00399             MAIND = 1
00400          END IF
00401 *
00402          IF( TSCAL.NE.ONE ) THEN
00403             GROW = ZERO
00404             GO TO 90
00405          END IF
00406 *
00407          IF( NOUNIT ) THEN
00408 *
00409 *           A is non-unit triangular.
00410 *
00411 *           Compute GROW = 1/G(j) and XBND = 1/M(j).
00412 *           Initially, M(0) = max{x(i), i=1,...,n}.
00413 *
00414             GROW = HALF / MAX( XBND, SMLNUM )
00415             XBND = GROW
00416             DO 70 J = JFIRST, JLAST, JINC
00417 *
00418 *              Exit the loop if the growth factor is too small.
00419 *
00420                IF( GROW.LE.SMLNUM )
00421      $            GO TO 90
00422 *
00423 *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
00424 *
00425                XJ = ONE + CNORM( J )
00426                GROW = MIN( GROW, XBND / XJ )
00427 *
00428                TJJS = AB( MAIND, J )
00429                TJJ = CABS1( TJJS )
00430 *
00431                IF( TJJ.GE.SMLNUM ) THEN
00432 *
00433 *                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
00434 *
00435                   IF( XJ.GT.TJJ )
00436      $               XBND = XBND*( TJJ / XJ )
00437                ELSE
00438 *
00439 *                 M(j) could overflow, set XBND to 0.
00440 *
00441                   XBND = ZERO
00442                END IF
00443    70       CONTINUE
00444             GROW = MIN( GROW, XBND )
00445          ELSE
00446 *
00447 *           A is unit triangular.
00448 *
00449 *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
00450 *
00451             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
00452             DO 80 J = JFIRST, JLAST, JINC
00453 *
00454 *              Exit the loop if the growth factor is too small.
00455 *
00456                IF( GROW.LE.SMLNUM )
00457      $            GO TO 90
00458 *
00459 *              G(j) = ( 1 + CNORM(j) )*G(j-1)
00460 *
00461                XJ = ONE + CNORM( J )
00462                GROW = GROW / XJ
00463    80       CONTINUE
00464          END IF
00465    90    CONTINUE
00466       END IF
00467 *
00468       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
00469 *
00470 *        Use the Level 2 BLAS solve if the reciprocal of the bound on
00471 *        elements of X is not too small.
00472 *
00473          CALL CTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, X, 1 )
00474       ELSE
00475 *
00476 *        Use a Level 1 BLAS solve, scaling intermediate results.
00477 *
00478          IF( XMAX.GT.BIGNUM*HALF ) THEN
00479 *
00480 *           Scale X so that its components are less than or equal to
00481 *           BIGNUM in absolute value.
00482 *
00483             SCALE = ( BIGNUM*HALF ) / XMAX
00484             CALL CSSCAL( N, SCALE, X, 1 )
00485             XMAX = BIGNUM
00486          ELSE
00487             XMAX = XMAX*TWO
00488          END IF
00489 *
00490          IF( NOTRAN ) THEN
00491 *
00492 *           Solve A * x = b
00493 *
00494             DO 110 J = JFIRST, JLAST, JINC
00495 *
00496 *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
00497 *
00498                XJ = CABS1( X( J ) )
00499                IF( NOUNIT ) THEN
00500                   TJJS = AB( MAIND, J )*TSCAL
00501                ELSE
00502                   TJJS = TSCAL
00503                   IF( TSCAL.EQ.ONE )
00504      $               GO TO 105
00505                END IF
00506                   TJJ = CABS1( TJJS )
00507                   IF( TJJ.GT.SMLNUM ) THEN
00508 *
00509 *                    abs(A(j,j)) > SMLNUM:
00510 *
00511                      IF( TJJ.LT.ONE ) THEN
00512                         IF( XJ.GT.TJJ*BIGNUM ) THEN
00513 *
00514 *                          Scale x by 1/b(j).
00515 *
00516                            REC = ONE / XJ
00517                            CALL CSSCAL( N, REC, X, 1 )
00518                            SCALE = SCALE*REC
00519                            XMAX = XMAX*REC
00520                         END IF
00521                      END IF
00522                      X( J ) = CLADIV( X( J ), TJJS )
00523                      XJ = CABS1( X( J ) )
00524                   ELSE IF( TJJ.GT.ZERO ) THEN
00525 *
00526 *                    0 < abs(A(j,j)) <= SMLNUM:
00527 *
00528                      IF( XJ.GT.TJJ*BIGNUM ) THEN
00529 *
00530 *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
00531 *                       to avoid overflow when dividing by A(j,j).
00532 *
00533                         REC = ( TJJ*BIGNUM ) / XJ
00534                         IF( CNORM( J ).GT.ONE ) THEN
00535 *
00536 *                          Scale by 1/CNORM(j) to avoid overflow when
00537 *                          multiplying x(j) times column j.
00538 *
00539                            REC = REC / CNORM( J )
00540                         END IF
00541                         CALL CSSCAL( N, REC, X, 1 )
00542                         SCALE = SCALE*REC
00543                         XMAX = XMAX*REC
00544                      END IF
00545                      X( J ) = CLADIV( X( J ), TJJS )
00546                      XJ = CABS1( X( J ) )
00547                   ELSE
00548 *
00549 *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
00550 *                    scale = 0, and compute a solution to A*x = 0.
00551 *
00552                      DO 100 I = 1, N
00553                         X( I ) = ZERO
00554   100                CONTINUE
00555                      X( J ) = ONE
00556                      XJ = ONE
00557                      SCALE = ZERO
00558                      XMAX = ZERO
00559                   END IF
00560   105          CONTINUE
00561 *
00562 *              Scale x if necessary to avoid overflow when adding a
00563 *              multiple of column j of A.
00564 *
00565                IF( XJ.GT.ONE ) THEN
00566                   REC = ONE / XJ
00567                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
00568 *
00569 *                    Scale x by 1/(2*abs(x(j))).
00570 *
00571                      REC = REC*HALF
00572                      CALL CSSCAL( N, REC, X, 1 )
00573                      SCALE = SCALE*REC
00574                   END IF
00575                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
00576 *
00577 *                 Scale x by 1/2.
00578 *
00579                   CALL CSSCAL( N, HALF, X, 1 )
00580                   SCALE = SCALE*HALF
00581                END IF
00582 *
00583                IF( UPPER ) THEN
00584                   IF( J.GT.1 ) THEN
00585 *
00586 *                    Compute the update
00587 *                       x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) -
00588 *                                             x(j)* A(max(1,j-kd):j-1,j)
00589 *
00590                      JLEN = MIN( KD, J-1 )
00591                      CALL CAXPY( JLEN, -X( J )*TSCAL,
00592      $                           AB( KD+1-JLEN, J ), 1, X( J-JLEN ), 1 )
00593                      I = ICAMAX( J-1, X, 1 )
00594                      XMAX = CABS1( X( I ) )
00595                   END IF
00596                ELSE IF( J.LT.N ) THEN
00597 *
00598 *                 Compute the update
00599 *                    x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) -
00600 *                                          x(j) * A(j+1:min(j+kd,n),j)
00601 *
00602                   JLEN = MIN( KD, N-J )
00603                   IF( JLEN.GT.0 )
00604      $               CALL CAXPY( JLEN, -X( J )*TSCAL, AB( 2, J ), 1,
00605      $                           X( J+1 ), 1 )
00606                   I = J + ICAMAX( N-J, X( J+1 ), 1 )
00607                   XMAX = CABS1( X( I ) )
00608                END IF
00609   110       CONTINUE
00610 *
00611          ELSE IF( LSAME( TRANS, 'T' ) ) THEN
00612 *
00613 *           Solve A**T * x = b
00614 *
00615             DO 150 J = JFIRST, JLAST, JINC
00616 *
00617 *              Compute x(j) = b(j) - sum A(k,j)*x(k).
00618 *                                    k<>j
00619 *
00620                XJ = CABS1( X( J ) )
00621                USCAL = TSCAL
00622                REC = ONE / MAX( XMAX, ONE )
00623                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
00624 *
00625 *                 If x(j) could overflow, scale x by 1/(2*XMAX).
00626 *
00627                   REC = REC*HALF
00628                   IF( NOUNIT ) THEN
00629                      TJJS = AB( MAIND, J )*TSCAL
00630                   ELSE
00631                      TJJS = TSCAL
00632                   END IF
00633                      TJJ = CABS1( TJJS )
00634                      IF( TJJ.GT.ONE ) THEN
00635 *
00636 *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
00637 *
00638                         REC = MIN( ONE, REC*TJJ )
00639                         USCAL = CLADIV( USCAL, TJJS )
00640                      END IF
00641                   IF( REC.LT.ONE ) THEN
00642                      CALL CSSCAL( N, REC, X, 1 )
00643                      SCALE = SCALE*REC
00644                      XMAX = XMAX*REC
00645                   END IF
00646                END IF
00647 *
00648                CSUMJ = ZERO
00649                IF( USCAL.EQ.CMPLX( ONE ) ) THEN
00650 *
00651 *                 If the scaling needed for A in the dot product is 1,
00652 *                 call CDOTU to perform the dot product.
00653 *
00654                   IF( UPPER ) THEN
00655                      JLEN = MIN( KD, J-1 )
00656                      CSUMJ = CDOTU( JLEN, AB( KD+1-JLEN, J ), 1,
00657      $                       X( J-JLEN ), 1 )
00658                   ELSE
00659                      JLEN = MIN( KD, N-J )
00660                      IF( JLEN.GT.1 )
00661      $                  CSUMJ = CDOTU( JLEN, AB( 2, J ), 1, X( J+1 ),
00662      $                          1 )
00663                   END IF
00664                ELSE
00665 *
00666 *                 Otherwise, use in-line code for the dot product.
00667 *
00668                   IF( UPPER ) THEN
00669                      JLEN = MIN( KD, J-1 )
00670                      DO 120 I = 1, JLEN
00671                         CSUMJ = CSUMJ + ( AB( KD+I-JLEN, J )*USCAL )*
00672      $                          X( J-JLEN-1+I )
00673   120                CONTINUE
00674                   ELSE
00675                      JLEN = MIN( KD, N-J )
00676                      DO 130 I = 1, JLEN
00677                         CSUMJ = CSUMJ + ( AB( I+1, J )*USCAL )*X( J+I )
00678   130                CONTINUE
00679                   END IF
00680                END IF
00681 *
00682                IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
00683 *
00684 *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
00685 *                 was not used to scale the dotproduct.
00686 *
00687                   X( J ) = X( J ) - CSUMJ
00688                   XJ = CABS1( X( J ) )
00689                   IF( NOUNIT ) THEN
00690 *
00691 *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
00692 *
00693                      TJJS = AB( MAIND, J )*TSCAL
00694                   ELSE
00695                      TJJS = TSCAL
00696                      IF( TSCAL.EQ.ONE )
00697      $                  GO TO 145
00698                   END IF
00699                      TJJ = CABS1( TJJS )
00700                      IF( TJJ.GT.SMLNUM ) THEN
00701 *
00702 *                       abs(A(j,j)) > SMLNUM:
00703 *
00704                         IF( TJJ.LT.ONE ) THEN
00705                            IF( XJ.GT.TJJ*BIGNUM ) THEN
00706 *
00707 *                             Scale X by 1/abs(x(j)).
00708 *
00709                               REC = ONE / XJ
00710                               CALL CSSCAL( N, REC, X, 1 )
00711                               SCALE = SCALE*REC
00712                               XMAX = XMAX*REC
00713                            END IF
00714                         END IF
00715                         X( J ) = CLADIV( X( J ), TJJS )
00716                      ELSE IF( TJJ.GT.ZERO ) THEN
00717 *
00718 *                       0 < abs(A(j,j)) <= SMLNUM:
00719 *
00720                         IF( XJ.GT.TJJ*BIGNUM ) THEN
00721 *
00722 *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
00723 *
00724                            REC = ( TJJ*BIGNUM ) / XJ
00725                            CALL CSSCAL( N, REC, X, 1 )
00726                            SCALE = SCALE*REC
00727                            XMAX = XMAX*REC
00728                         END IF
00729                         X( J ) = CLADIV( X( J ), TJJS )
00730                      ELSE
00731 *
00732 *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
00733 *                       scale = 0 and compute a solution to A**T *x = 0.
00734 *
00735                         DO 140 I = 1, N
00736                            X( I ) = ZERO
00737   140                   CONTINUE
00738                         X( J ) = ONE
00739                         SCALE = ZERO
00740                         XMAX = ZERO
00741                      END IF
00742   145             CONTINUE
00743                ELSE
00744 *
00745 *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
00746 *                 product has already been divided by 1/A(j,j).
00747 *
00748                   X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
00749                END IF
00750                XMAX = MAX( XMAX, CABS1( X( J ) ) )
00751   150       CONTINUE
00752 *
00753          ELSE
00754 *
00755 *           Solve A**H * x = b
00756 *
00757             DO 190 J = JFIRST, JLAST, JINC
00758 *
00759 *              Compute x(j) = b(j) - sum A(k,j)*x(k).
00760 *                                    k<>j
00761 *
00762                XJ = CABS1( X( J ) )
00763                USCAL = TSCAL
00764                REC = ONE / MAX( XMAX, ONE )
00765                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
00766 *
00767 *                 If x(j) could overflow, scale x by 1/(2*XMAX).
00768 *
00769                   REC = REC*HALF
00770                   IF( NOUNIT ) THEN
00771                      TJJS = CONJG( AB( MAIND, J ) )*TSCAL
00772                   ELSE
00773                      TJJS = TSCAL
00774                   END IF
00775                      TJJ = CABS1( TJJS )
00776                      IF( TJJ.GT.ONE ) THEN
00777 *
00778 *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
00779 *
00780                         REC = MIN( ONE, REC*TJJ )
00781                         USCAL = CLADIV( USCAL, TJJS )
00782                      END IF
00783                   IF( REC.LT.ONE ) THEN
00784                      CALL CSSCAL( N, REC, X, 1 )
00785                      SCALE = SCALE*REC
00786                      XMAX = XMAX*REC
00787                   END IF
00788                END IF
00789 *
00790                CSUMJ = ZERO
00791                IF( USCAL.EQ.CMPLX( ONE ) ) THEN
00792 *
00793 *                 If the scaling needed for A in the dot product is 1,
00794 *                 call CDOTC to perform the dot product.
00795 *
00796                   IF( UPPER ) THEN
00797                      JLEN = MIN( KD, J-1 )
00798                      CSUMJ = CDOTC( JLEN, AB( KD+1-JLEN, J ), 1,
00799      $                       X( J-JLEN ), 1 )
00800                   ELSE
00801                      JLEN = MIN( KD, N-J )
00802                      IF( JLEN.GT.1 )
00803      $                  CSUMJ = CDOTC( JLEN, AB( 2, J ), 1, X( J+1 ),
00804      $                          1 )
00805                   END IF
00806                ELSE
00807 *
00808 *                 Otherwise, use in-line code for the dot product.
00809 *
00810                   IF( UPPER ) THEN
00811                      JLEN = MIN( KD, J-1 )
00812                      DO 160 I = 1, JLEN
00813                         CSUMJ = CSUMJ + ( CONJG( AB( KD+I-JLEN, J ) )*
00814      $                          USCAL )*X( J-JLEN-1+I )
00815   160                CONTINUE
00816                   ELSE
00817                      JLEN = MIN( KD, N-J )
00818                      DO 170 I = 1, JLEN
00819                         CSUMJ = CSUMJ + ( CONJG( AB( I+1, J ) )*USCAL )*
00820      $                          X( J+I )
00821   170                CONTINUE
00822                   END IF
00823                END IF
00824 *
00825                IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
00826 *
00827 *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
00828 *                 was not used to scale the dotproduct.
00829 *
00830                   X( J ) = X( J ) - CSUMJ
00831                   XJ = CABS1( X( J ) )
00832                   IF( NOUNIT ) THEN
00833 *
00834 *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
00835 *
00836                      TJJS = CONJG( AB( MAIND, J ) )*TSCAL
00837                   ELSE
00838                      TJJS = TSCAL
00839                      IF( TSCAL.EQ.ONE )
00840      $                  GO TO 185
00841                   END IF
00842                      TJJ = CABS1( TJJS )
00843                      IF( TJJ.GT.SMLNUM ) THEN
00844 *
00845 *                       abs(A(j,j)) > SMLNUM:
00846 *
00847                         IF( TJJ.LT.ONE ) THEN
00848                            IF( XJ.GT.TJJ*BIGNUM ) THEN
00849 *
00850 *                             Scale X by 1/abs(x(j)).
00851 *
00852                               REC = ONE / XJ
00853                               CALL CSSCAL( N, REC, X, 1 )
00854                               SCALE = SCALE*REC
00855                               XMAX = XMAX*REC
00856                            END IF
00857                         END IF
00858                         X( J ) = CLADIV( X( J ), TJJS )
00859                      ELSE IF( TJJ.GT.ZERO ) THEN
00860 *
00861 *                       0 < abs(A(j,j)) <= SMLNUM:
00862 *
00863                         IF( XJ.GT.TJJ*BIGNUM ) THEN
00864 *
00865 *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
00866 *
00867                            REC = ( TJJ*BIGNUM ) / XJ
00868                            CALL CSSCAL( N, REC, X, 1 )
00869                            SCALE = SCALE*REC
00870                            XMAX = XMAX*REC
00871                         END IF
00872                         X( J ) = CLADIV( X( J ), TJJS )
00873                      ELSE
00874 *
00875 *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
00876 *                       scale = 0 and compute a solution to A**H *x = 0.
00877 *
00878                         DO 180 I = 1, N
00879                            X( I ) = ZERO
00880   180                   CONTINUE
00881                         X( J ) = ONE
00882                         SCALE = ZERO
00883                         XMAX = ZERO
00884                      END IF
00885   185             CONTINUE
00886                ELSE
00887 *
00888 *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
00889 *                 product has already been divided by 1/A(j,j).
00890 *
00891                   X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
00892                END IF
00893                XMAX = MAX( XMAX, CABS1( X( J ) ) )
00894   190       CONTINUE
00895          END IF
00896          SCALE = SCALE / TSCAL
00897       END IF
00898 *
00899 *     Scale the column norms by 1/TSCAL for return.
00900 *
00901       IF( TSCAL.NE.ONE ) THEN
00902          CALL SSCAL( N, ONE / TSCAL, CNORM, 1 )
00903       END IF
00904 *
00905       RETURN
00906 *
00907 *     End of CLATBS
00908 *
00909       END
 All Files Functions