LAPACK 3.3.0
|
00001 SUBROUTINE ZLARGV( N, X, INCX, Y, INCY, C, INCC ) 00002 * 00003 * -- LAPACK auxiliary routine (version 3.2) -- 00004 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00005 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 INTEGER INCC, INCX, INCY, N 00010 * .. 00011 * .. Array Arguments .. 00012 DOUBLE PRECISION C( * ) 00013 COMPLEX*16 X( * ), Y( * ) 00014 * .. 00015 * 00016 * Purpose 00017 * ======= 00018 * 00019 * ZLARGV generates a vector of complex plane rotations with real 00020 * cosines, determined by elements of the complex vectors x and y. 00021 * For i = 1,2,...,n 00022 * 00023 * ( c(i) s(i) ) ( x(i) ) = ( r(i) ) 00024 * ( -conjg(s(i)) c(i) ) ( y(i) ) = ( 0 ) 00025 * 00026 * where c(i)**2 + ABS(s(i))**2 = 1 00027 * 00028 * The following conventions are used (these are the same as in ZLARTG, 00029 * but differ from the BLAS1 routine ZROTG): 00030 * If y(i)=0, then c(i)=1 and s(i)=0. 00031 * If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real. 00032 * 00033 * Arguments 00034 * ========= 00035 * 00036 * N (input) INTEGER 00037 * The number of plane rotations to be generated. 00038 * 00039 * X (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX) 00040 * On entry, the vector x. 00041 * On exit, x(i) is overwritten by r(i), for i = 1,...,n. 00042 * 00043 * INCX (input) INTEGER 00044 * The increment between elements of X. INCX > 0. 00045 * 00046 * Y (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCY) 00047 * On entry, the vector y. 00048 * On exit, the sines of the plane rotations. 00049 * 00050 * INCY (input) INTEGER 00051 * The increment between elements of Y. INCY > 0. 00052 * 00053 * C (output) DOUBLE PRECISION array, dimension (1+(N-1)*INCC) 00054 * The cosines of the plane rotations. 00055 * 00056 * INCC (input) INTEGER 00057 * The increment between elements of C. INCC > 0. 00058 * 00059 * Further Details 00060 * ======= ======= 00061 * 00062 * 6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel 00063 * 00064 * This version has a few statements commented out for thread safety 00065 * (machine parameters are computed on each entry). 10 feb 03, SJH. 00066 * 00067 * ===================================================================== 00068 * 00069 * .. Parameters .. 00070 DOUBLE PRECISION TWO, ONE, ZERO 00071 PARAMETER ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 ) 00072 COMPLEX*16 CZERO 00073 PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) ) 00074 * .. 00075 * .. Local Scalars .. 00076 * LOGICAL FIRST 00077 00078 INTEGER COUNT, I, IC, IX, IY, J 00079 DOUBLE PRECISION CS, D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN, 00080 $ SAFMN2, SAFMX2, SCALE 00081 COMPLEX*16 F, FF, FS, G, GS, R, SN 00082 * .. 00083 * .. External Functions .. 00084 DOUBLE PRECISION DLAMCH, DLAPY2 00085 EXTERNAL DLAMCH, DLAPY2 00086 * .. 00087 * .. Intrinsic Functions .. 00088 INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, LOG, 00089 $ MAX, SQRT 00090 * .. 00091 * .. Statement Functions .. 00092 DOUBLE PRECISION ABS1, ABSSQ 00093 * .. 00094 * .. Save statement .. 00095 * SAVE FIRST, SAFMX2, SAFMIN, SAFMN2 00096 * .. 00097 * .. Data statements .. 00098 * DATA FIRST / .TRUE. / 00099 * .. 00100 * .. Statement Function definitions .. 00101 ABS1( FF ) = MAX( ABS( DBLE( FF ) ), ABS( DIMAG( FF ) ) ) 00102 ABSSQ( FF ) = DBLE( FF )**2 + DIMAG( FF )**2 00103 * .. 00104 * .. Executable Statements .. 00105 * 00106 * IF( FIRST ) THEN 00107 * FIRST = .FALSE. 00108 SAFMIN = DLAMCH( 'S' ) 00109 EPS = DLAMCH( 'E' ) 00110 SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) / 00111 $ LOG( DLAMCH( 'B' ) ) / TWO ) 00112 SAFMX2 = ONE / SAFMN2 00113 * END IF 00114 IX = 1 00115 IY = 1 00116 IC = 1 00117 DO 60 I = 1, N 00118 F = X( IX ) 00119 G = Y( IY ) 00120 * 00121 * Use identical algorithm as in ZLARTG 00122 * 00123 SCALE = MAX( ABS1( F ), ABS1( G ) ) 00124 FS = F 00125 GS = G 00126 COUNT = 0 00127 IF( SCALE.GE.SAFMX2 ) THEN 00128 10 CONTINUE 00129 COUNT = COUNT + 1 00130 FS = FS*SAFMN2 00131 GS = GS*SAFMN2 00132 SCALE = SCALE*SAFMN2 00133 IF( SCALE.GE.SAFMX2 ) 00134 $ GO TO 10 00135 ELSE IF( SCALE.LE.SAFMN2 ) THEN 00136 IF( G.EQ.CZERO ) THEN 00137 CS = ONE 00138 SN = CZERO 00139 R = F 00140 GO TO 50 00141 END IF 00142 20 CONTINUE 00143 COUNT = COUNT - 1 00144 FS = FS*SAFMX2 00145 GS = GS*SAFMX2 00146 SCALE = SCALE*SAFMX2 00147 IF( SCALE.LE.SAFMN2 ) 00148 $ GO TO 20 00149 END IF 00150 F2 = ABSSQ( FS ) 00151 G2 = ABSSQ( GS ) 00152 IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN 00153 * 00154 * This is a rare case: F is very small. 00155 * 00156 IF( F.EQ.CZERO ) THEN 00157 CS = ZERO 00158 R = DLAPY2( DBLE( G ), DIMAG( G ) ) 00159 * Do complex/real division explicitly with two real 00160 * divisions 00161 D = DLAPY2( DBLE( GS ), DIMAG( GS ) ) 00162 SN = DCMPLX( DBLE( GS ) / D, -DIMAG( GS ) / D ) 00163 GO TO 50 00164 END IF 00165 F2S = DLAPY2( DBLE( FS ), DIMAG( FS ) ) 00166 * G2 and G2S are accurate 00167 * G2 is at least SAFMIN, and G2S is at least SAFMN2 00168 G2S = SQRT( G2 ) 00169 * Error in CS from underflow in F2S is at most 00170 * UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS 00171 * If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN, 00172 * and so CS .lt. sqrt(SAFMIN) 00173 * If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN 00174 * and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS) 00175 * Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S 00176 CS = F2S / G2S 00177 * Make sure abs(FF) = 1 00178 * Do complex/real division explicitly with 2 real divisions 00179 IF( ABS1( F ).GT.ONE ) THEN 00180 D = DLAPY2( DBLE( F ), DIMAG( F ) ) 00181 FF = DCMPLX( DBLE( F ) / D, DIMAG( F ) / D ) 00182 ELSE 00183 DR = SAFMX2*DBLE( F ) 00184 DI = SAFMX2*DIMAG( F ) 00185 D = DLAPY2( DR, DI ) 00186 FF = DCMPLX( DR / D, DI / D ) 00187 END IF 00188 SN = FF*DCMPLX( DBLE( GS ) / G2S, -DIMAG( GS ) / G2S ) 00189 R = CS*F + SN*G 00190 ELSE 00191 * 00192 * This is the most common case. 00193 * Neither F2 nor F2/G2 are less than SAFMIN 00194 * F2S cannot overflow, and it is accurate 00195 * 00196 F2S = SQRT( ONE+G2 / F2 ) 00197 * Do the F2S(real)*FS(complex) multiply with two real 00198 * multiplies 00199 R = DCMPLX( F2S*DBLE( FS ), F2S*DIMAG( FS ) ) 00200 CS = ONE / F2S 00201 D = F2 + G2 00202 * Do complex/real division explicitly with two real divisions 00203 SN = DCMPLX( DBLE( R ) / D, DIMAG( R ) / D ) 00204 SN = SN*DCONJG( GS ) 00205 IF( COUNT.NE.0 ) THEN 00206 IF( COUNT.GT.0 ) THEN 00207 DO 30 J = 1, COUNT 00208 R = R*SAFMX2 00209 30 CONTINUE 00210 ELSE 00211 DO 40 J = 1, -COUNT 00212 R = R*SAFMN2 00213 40 CONTINUE 00214 END IF 00215 END IF 00216 END IF 00217 50 CONTINUE 00218 C( IC ) = CS 00219 Y( IY ) = SN 00220 X( IX ) = R 00221 IC = IC + INCC 00222 IY = IY + INCY 00223 IX = IX + INCX 00224 60 CONTINUE 00225 RETURN 00226 * 00227 * End of ZLARGV 00228 * 00229 END