LAPACK 3.3.0

cgelss.f

Go to the documentation of this file.
00001       SUBROUTINE CGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
00002      $                   WORK, LWORK, RWORK, INFO )
00003 *
00004 *  -- LAPACK driver routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
00011       REAL               RCOND
00012 *     ..
00013 *     .. Array Arguments ..
00014       REAL               RWORK( * ), S( * )
00015       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )
00016 *     ..
00017 *
00018 *  Purpose
00019 *  =======
00020 *
00021 *  CGELSS computes the minimum norm solution to a complex linear
00022 *  least squares problem:
00023 *
00024 *  Minimize 2-norm(| b - A*x |).
00025 *
00026 *  using the singular value decomposition (SVD) of A. A is an M-by-N
00027 *  matrix which may be rank-deficient.
00028 *
00029 *  Several right hand side vectors b and solution vectors x can be
00030 *  handled in a single call; they are stored as the columns of the
00031 *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
00032 *  X.
00033 *
00034 *  The effective rank of A is determined by treating as zero those
00035 *  singular values which are less than RCOND times the largest singular
00036 *  value.
00037 *
00038 *  Arguments
00039 *  =========
00040 *
00041 *  M       (input) INTEGER
00042 *          The number of rows of the matrix A. M >= 0.
00043 *
00044 *  N       (input) INTEGER
00045 *          The number of columns of the matrix A. N >= 0.
00046 *
00047 *  NRHS    (input) INTEGER
00048 *          The number of right hand sides, i.e., the number of columns
00049 *          of the matrices B and X. NRHS >= 0.
00050 *
00051 *  A       (input/output) COMPLEX array, dimension (LDA,N)
00052 *          On entry, the M-by-N matrix A.
00053 *          On exit, the first min(m,n) rows of A are overwritten with
00054 *          its right singular vectors, stored rowwise.
00055 *
00056 *  LDA     (input) INTEGER
00057 *          The leading dimension of the array A. LDA >= max(1,M).
00058 *
00059 *  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
00060 *          On entry, the M-by-NRHS right hand side matrix B.
00061 *          On exit, B is overwritten by the N-by-NRHS solution matrix X.
00062 *          If m >= n and RANK = n, the residual sum-of-squares for
00063 *          the solution in the i-th column is given by the sum of
00064 *          squares of the modulus of elements n+1:m in that column.
00065 *
00066 *  LDB     (input) INTEGER
00067 *          The leading dimension of the array B.  LDB >= max(1,M,N).
00068 *
00069 *  S       (output) REAL array, dimension (min(M,N))
00070 *          The singular values of A in decreasing order.
00071 *          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
00072 *
00073 *  RCOND   (input) REAL
00074 *          RCOND is used to determine the effective rank of A.
00075 *          Singular values S(i) <= RCOND*S(1) are treated as zero.
00076 *          If RCOND < 0, machine precision is used instead.
00077 *
00078 *  RANK    (output) INTEGER
00079 *          The effective rank of A, i.e., the number of singular values
00080 *          which are greater than RCOND*S(1).
00081 *
00082 *  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
00083 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
00084 *
00085 *  LWORK   (input) INTEGER
00086 *          The dimension of the array WORK. LWORK >= 1, and also:
00087 *          LWORK >=  2*min(M,N) + max(M,N,NRHS)
00088 *          For good performance, LWORK should generally be larger.
00089 *
00090 *          If LWORK = -1, then a workspace query is assumed; the routine
00091 *          only calculates the optimal size of the WORK array, returns
00092 *          this value as the first entry of the WORK array, and no error
00093 *          message related to LWORK is issued by XERBLA.
00094 *
00095 *  RWORK   (workspace) REAL array, dimension (5*min(M,N))
00096 *
00097 *  INFO    (output) INTEGER
00098 *          = 0:  successful exit
00099 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
00100 *          > 0:  the algorithm for computing the SVD failed to converge;
00101 *                if INFO = i, i off-diagonal elements of an intermediate
00102 *                bidiagonal form did not converge to zero.
00103 *
00104 *  =====================================================================
00105 *
00106 *     .. Parameters ..
00107       REAL               ZERO, ONE
00108       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
00109       COMPLEX            CZERO, CONE
00110       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
00111      $                   CONE = ( 1.0E+0, 0.0E+0 ) )
00112 *     ..
00113 *     .. Local Scalars ..
00114       LOGICAL            LQUERY
00115       INTEGER            BL, CHUNK, I, IASCL, IBSCL, IE, IL, IRWORK,
00116      $                   ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
00117      $                   MAXWRK, MINMN, MINWRK, MM, MNTHR
00118       REAL               ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
00119 *     ..
00120 *     .. Local Arrays ..
00121       COMPLEX            VDUM( 1 )
00122 *     ..
00123 *     .. External Subroutines ..
00124       EXTERNAL           CBDSQR, CCOPY, CGEBRD, CGELQF, CGEMM, CGEMV,
00125      $                   CGEQRF, CLACPY, CLASCL, CLASET, CSRSCL, CUNGBR,
00126      $                   CUNMBR, CUNMLQ, CUNMQR, SLABAD, SLASCL, SLASET,
00127      $                   XERBLA
00128 *     ..
00129 *     .. External Functions ..
00130       INTEGER            ILAENV
00131       REAL               CLANGE, SLAMCH
00132       EXTERNAL           ILAENV, CLANGE, SLAMCH
00133 *     ..
00134 *     .. Intrinsic Functions ..
00135       INTRINSIC          MAX, MIN
00136 *     ..
00137 *     .. Executable Statements ..
00138 *
00139 *     Test the input arguments
00140 *
00141       INFO = 0
00142       MINMN = MIN( M, N )
00143       MAXMN = MAX( M, N )
00144       LQUERY = ( LWORK.EQ.-1 )
00145       IF( M.LT.0 ) THEN
00146          INFO = -1
00147       ELSE IF( N.LT.0 ) THEN
00148          INFO = -2
00149       ELSE IF( NRHS.LT.0 ) THEN
00150          INFO = -3
00151       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
00152          INFO = -5
00153       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
00154          INFO = -7
00155       END IF
00156 *
00157 *     Compute workspace
00158 *      (Note: Comments in the code beginning "Workspace:" describe the
00159 *       minimal amount of workspace needed at that point in the code,
00160 *       as well as the preferred amount for good performance.
00161 *       CWorkspace refers to complex workspace, and RWorkspace refers
00162 *       to real workspace. NB refers to the optimal block size for the
00163 *       immediately following subroutine, as returned by ILAENV.)
00164 *
00165       IF( INFO.EQ.0 ) THEN
00166          MINWRK = 1
00167          MAXWRK = 1
00168          IF( MINMN.GT.0 ) THEN
00169             MM = M
00170             MNTHR = ILAENV( 6, 'CGELSS', ' ', M, N, NRHS, -1 )
00171             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
00172 *
00173 *              Path 1a - overdetermined, with many more rows than
00174 *                        columns
00175 *
00176                MM = N
00177                MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'CGEQRF', ' ', M,
00178      $                       N, -1, -1 ) )
00179                MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1, 'CUNMQR', 'LC',
00180      $                       M, NRHS, N, -1 ) )
00181             END IF
00182             IF( M.GE.N ) THEN
00183 *
00184 *              Path 1 - overdetermined or exactly determined
00185 *
00186                MAXWRK = MAX( MAXWRK, 2*N + ( MM + N )*ILAENV( 1,
00187      $                       'CGEBRD', ' ', MM, N, -1, -1 ) )
00188                MAXWRK = MAX( MAXWRK, 2*N + NRHS*ILAENV( 1, 'CUNMBR',
00189      $                       'QLC', MM, NRHS, N, -1 ) )
00190                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
00191      $                       'CUNGBR', 'P', N, N, N, -1 ) )
00192                MAXWRK = MAX( MAXWRK, N*NRHS )
00193                MINWRK = 2*N + MAX( NRHS, M )
00194             END IF
00195             IF( N.GT.M ) THEN
00196                MINWRK = 2*M + MAX( NRHS, N )
00197                IF( N.GE.MNTHR ) THEN
00198 *
00199 *                 Path 2a - underdetermined, with many more columns
00200 *                 than rows
00201 *
00202                   MAXWRK = M + M*ILAENV( 1, 'CGELQF', ' ', M, N, -1,
00203      $                     -1 )
00204                   MAXWRK = MAX( MAXWRK, 3*M + M*M + 2*M*ILAENV( 1,
00205      $                          'CGEBRD', ' ', M, M, -1, -1 ) )
00206                   MAXWRK = MAX( MAXWRK, 3*M + M*M + NRHS*ILAENV( 1,
00207      $                          'CUNMBR', 'QLC', M, NRHS, M, -1 ) )
00208                   MAXWRK = MAX( MAXWRK, 3*M + M*M + ( M - 1 )*ILAENV( 1,
00209      $                          'CUNGBR', 'P', M, M, M, -1 ) )
00210                   IF( NRHS.GT.1 ) THEN
00211                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
00212                   ELSE
00213                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
00214                   END IF
00215                   MAXWRK = MAX( MAXWRK, M + NRHS*ILAENV( 1, 'CUNMLQ',
00216      $                          'LC', N, NRHS, M, -1 ) )
00217                ELSE
00218 *
00219 *                 Path 2 - underdetermined
00220 *
00221                   MAXWRK = 2*M + ( N + M )*ILAENV( 1, 'CGEBRD', ' ', M,
00222      $                     N, -1, -1 )
00223                   MAXWRK = MAX( MAXWRK, 2*M + NRHS*ILAENV( 1, 'CUNMBR',
00224      $                          'QLC', M, NRHS, M, -1 ) )
00225                   MAXWRK = MAX( MAXWRK, 2*M + M*ILAENV( 1, 'CUNGBR',
00226      $                          'P', M, N, M, -1 ) )
00227                   MAXWRK = MAX( MAXWRK, N*NRHS )
00228                END IF
00229             END IF
00230             MAXWRK = MAX( MINWRK, MAXWRK )
00231          END IF
00232          WORK( 1 ) = MAXWRK
00233 *
00234          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
00235      $      INFO = -12
00236       END IF
00237 *
00238       IF( INFO.NE.0 ) THEN
00239          CALL XERBLA( 'CGELSS', -INFO )
00240          RETURN
00241       ELSE IF( LQUERY ) THEN
00242          RETURN
00243       END IF
00244 *
00245 *     Quick return if possible
00246 *
00247       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
00248          RANK = 0
00249          RETURN
00250       END IF
00251 *
00252 *     Get machine parameters
00253 *
00254       EPS = SLAMCH( 'P' )
00255       SFMIN = SLAMCH( 'S' )
00256       SMLNUM = SFMIN / EPS
00257       BIGNUM = ONE / SMLNUM
00258       CALL SLABAD( SMLNUM, BIGNUM )
00259 *
00260 *     Scale A if max element outside range [SMLNUM,BIGNUM]
00261 *
00262       ANRM = CLANGE( 'M', M, N, A, LDA, RWORK )
00263       IASCL = 0
00264       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
00265 *
00266 *        Scale matrix norm up to SMLNUM
00267 *
00268          CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
00269          IASCL = 1
00270       ELSE IF( ANRM.GT.BIGNUM ) THEN
00271 *
00272 *        Scale matrix norm down to BIGNUM
00273 *
00274          CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
00275          IASCL = 2
00276       ELSE IF( ANRM.EQ.ZERO ) THEN
00277 *
00278 *        Matrix all zero. Return zero solution.
00279 *
00280          CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
00281          CALL SLASET( 'F', MINMN, 1, ZERO, ZERO, S, MINMN )
00282          RANK = 0
00283          GO TO 70
00284       END IF
00285 *
00286 *     Scale B if max element outside range [SMLNUM,BIGNUM]
00287 *
00288       BNRM = CLANGE( 'M', M, NRHS, B, LDB, RWORK )
00289       IBSCL = 0
00290       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
00291 *
00292 *        Scale matrix norm up to SMLNUM
00293 *
00294          CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
00295          IBSCL = 1
00296       ELSE IF( BNRM.GT.BIGNUM ) THEN
00297 *
00298 *        Scale matrix norm down to BIGNUM
00299 *
00300          CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
00301          IBSCL = 2
00302       END IF
00303 *
00304 *     Overdetermined case
00305 *
00306       IF( M.GE.N ) THEN
00307 *
00308 *        Path 1 - overdetermined or exactly determined
00309 *
00310          MM = M
00311          IF( M.GE.MNTHR ) THEN
00312 *
00313 *           Path 1a - overdetermined, with many more rows than columns
00314 *
00315             MM = N
00316             ITAU = 1
00317             IWORK = ITAU + N
00318 *
00319 *           Compute A=Q*R
00320 *           (CWorkspace: need 2*N, prefer N+N*NB)
00321 *           (RWorkspace: none)
00322 *
00323             CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
00324      $                   LWORK-IWORK+1, INFO )
00325 *
00326 *           Multiply B by transpose(Q)
00327 *           (CWorkspace: need N+NRHS, prefer N+NRHS*NB)
00328 *           (RWorkspace: none)
00329 *
00330             CALL CUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
00331      $                   LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
00332 *
00333 *           Zero out below R
00334 *
00335             IF( N.GT.1 )
00336      $         CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
00337      $                      LDA )
00338          END IF
00339 *
00340          IE = 1
00341          ITAUQ = 1
00342          ITAUP = ITAUQ + N
00343          IWORK = ITAUP + N
00344 *
00345 *        Bidiagonalize R in A
00346 *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
00347 *        (RWorkspace: need N)
00348 *
00349          CALL CGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
00350      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
00351      $                INFO )
00352 *
00353 *        Multiply B by transpose of left bidiagonalizing vectors of R
00354 *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
00355 *        (RWorkspace: none)
00356 *
00357          CALL CUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
00358      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
00359 *
00360 *        Generate right bidiagonalizing vectors of R in A
00361 *        (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
00362 *        (RWorkspace: none)
00363 *
00364          CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
00365      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
00366          IRWORK = IE + N
00367 *
00368 *        Perform bidiagonal QR iteration
00369 *          multiply B by transpose of left singular vectors
00370 *          compute right singular vectors in A
00371 *        (CWorkspace: none)
00372 *        (RWorkspace: need BDSPAC)
00373 *
00374          CALL CBDSQR( 'U', N, N, 0, NRHS, S, RWORK( IE ), A, LDA, VDUM,
00375      $                1, B, LDB, RWORK( IRWORK ), INFO )
00376          IF( INFO.NE.0 )
00377      $      GO TO 70
00378 *
00379 *        Multiply B by reciprocals of singular values
00380 *
00381          THR = MAX( RCOND*S( 1 ), SFMIN )
00382          IF( RCOND.LT.ZERO )
00383      $      THR = MAX( EPS*S( 1 ), SFMIN )
00384          RANK = 0
00385          DO 10 I = 1, N
00386             IF( S( I ).GT.THR ) THEN
00387                CALL CSRSCL( NRHS, S( I ), B( I, 1 ), LDB )
00388                RANK = RANK + 1
00389             ELSE
00390                CALL CLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
00391             END IF
00392    10    CONTINUE
00393 *
00394 *        Multiply B by right singular vectors
00395 *        (CWorkspace: need N, prefer N*NRHS)
00396 *        (RWorkspace: none)
00397 *
00398          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
00399             CALL CGEMM( 'C', 'N', N, NRHS, N, CONE, A, LDA, B, LDB,
00400      $                  CZERO, WORK, LDB )
00401             CALL CLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
00402          ELSE IF( NRHS.GT.1 ) THEN
00403             CHUNK = LWORK / N
00404             DO 20 I = 1, NRHS, CHUNK
00405                BL = MIN( NRHS-I+1, CHUNK )
00406                CALL CGEMM( 'C', 'N', N, BL, N, CONE, A, LDA, B( 1, I ),
00407      $                     LDB, CZERO, WORK, N )
00408                CALL CLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
00409    20       CONTINUE
00410          ELSE
00411             CALL CGEMV( 'C', N, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
00412             CALL CCOPY( N, WORK, 1, B, 1 )
00413          END IF
00414 *
00415       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.3*M+M*M+MAX( M, NRHS, N-2*M ) )
00416      $          THEN
00417 *
00418 *        Underdetermined case, M much less than N
00419 *
00420 *        Path 2a - underdetermined, with many more columns than rows
00421 *        and sufficient workspace for an efficient algorithm
00422 *
00423          LDWORK = M
00424          IF( LWORK.GE.3*M+M*LDA+MAX( M, NRHS, N-2*M ) )
00425      $      LDWORK = LDA
00426          ITAU = 1
00427          IWORK = M + 1
00428 *
00429 *        Compute A=L*Q
00430 *        (CWorkspace: need 2*M, prefer M+M*NB)
00431 *        (RWorkspace: none)
00432 *
00433          CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
00434      $                LWORK-IWORK+1, INFO )
00435          IL = IWORK
00436 *
00437 *        Copy L to WORK(IL), zeroing out above it
00438 *
00439          CALL CLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
00440          CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
00441      $                LDWORK )
00442          IE = 1
00443          ITAUQ = IL + LDWORK*M
00444          ITAUP = ITAUQ + M
00445          IWORK = ITAUP + M
00446 *
00447 *        Bidiagonalize L in WORK(IL)
00448 *        (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
00449 *        (RWorkspace: need M)
00450 *
00451          CALL CGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
00452      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
00453      $                LWORK-IWORK+1, INFO )
00454 *
00455 *        Multiply B by transpose of left bidiagonalizing vectors of L
00456 *        (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB)
00457 *        (RWorkspace: none)
00458 *
00459          CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
00460      $                WORK( ITAUQ ), B, LDB, WORK( IWORK ),
00461      $                LWORK-IWORK+1, INFO )
00462 *
00463 *        Generate right bidiagonalizing vectors of R in WORK(IL)
00464 *        (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
00465 *        (RWorkspace: none)
00466 *
00467          CALL CUNGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
00468      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
00469          IRWORK = IE + M
00470 *
00471 *        Perform bidiagonal QR iteration, computing right singular
00472 *        vectors of L in WORK(IL) and multiplying B by transpose of
00473 *        left singular vectors
00474 *        (CWorkspace: need M*M)
00475 *        (RWorkspace: need BDSPAC)
00476 *
00477          CALL CBDSQR( 'U', M, M, 0, NRHS, S, RWORK( IE ), WORK( IL ),
00478      $                LDWORK, A, LDA, B, LDB, RWORK( IRWORK ), INFO )
00479          IF( INFO.NE.0 )
00480      $      GO TO 70
00481 *
00482 *        Multiply B by reciprocals of singular values
00483 *
00484          THR = MAX( RCOND*S( 1 ), SFMIN )
00485          IF( RCOND.LT.ZERO )
00486      $      THR = MAX( EPS*S( 1 ), SFMIN )
00487          RANK = 0
00488          DO 30 I = 1, M
00489             IF( S( I ).GT.THR ) THEN
00490                CALL CSRSCL( NRHS, S( I ), B( I, 1 ), LDB )
00491                RANK = RANK + 1
00492             ELSE
00493                CALL CLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
00494             END IF
00495    30    CONTINUE
00496          IWORK = IL + M*LDWORK
00497 *
00498 *        Multiply B by right singular vectors of L in WORK(IL)
00499 *        (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS)
00500 *        (RWorkspace: none)
00501 *
00502          IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
00503             CALL CGEMM( 'C', 'N', M, NRHS, M, CONE, WORK( IL ), LDWORK,
00504      $                  B, LDB, CZERO, WORK( IWORK ), LDB )
00505             CALL CLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
00506          ELSE IF( NRHS.GT.1 ) THEN
00507             CHUNK = ( LWORK-IWORK+1 ) / M
00508             DO 40 I = 1, NRHS, CHUNK
00509                BL = MIN( NRHS-I+1, CHUNK )
00510                CALL CGEMM( 'C', 'N', M, BL, M, CONE, WORK( IL ), LDWORK,
00511      $                     B( 1, I ), LDB, CZERO, WORK( IWORK ), M )
00512                CALL CLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
00513      $                      LDB )
00514    40       CONTINUE
00515          ELSE
00516             CALL CGEMV( 'C', M, M, CONE, WORK( IL ), LDWORK, B( 1, 1 ),
00517      $                  1, CZERO, WORK( IWORK ), 1 )
00518             CALL CCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 )
00519          END IF
00520 *
00521 *        Zero out below first M rows of B
00522 *
00523          CALL CLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
00524          IWORK = ITAU + M
00525 *
00526 *        Multiply transpose(Q) by B
00527 *        (CWorkspace: need M+NRHS, prefer M+NHRS*NB)
00528 *        (RWorkspace: none)
00529 *
00530          CALL CUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
00531      $                LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
00532 *
00533       ELSE
00534 *
00535 *        Path 2 - remaining underdetermined cases
00536 *
00537          IE = 1
00538          ITAUQ = 1
00539          ITAUP = ITAUQ + M
00540          IWORK = ITAUP + M
00541 *
00542 *        Bidiagonalize A
00543 *        (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB)
00544 *        (RWorkspace: need N)
00545 *
00546          CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
00547      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
00548      $                INFO )
00549 *
00550 *        Multiply B by transpose of left bidiagonalizing vectors
00551 *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
00552 *        (RWorkspace: none)
00553 *
00554          CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
00555      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
00556 *
00557 *        Generate right bidiagonalizing vectors in A
00558 *        (CWorkspace: need 3*M, prefer 2*M+M*NB)
00559 *        (RWorkspace: none)
00560 *
00561          CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
00562      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
00563          IRWORK = IE + M
00564 *
00565 *        Perform bidiagonal QR iteration,
00566 *           computing right singular vectors of A in A and
00567 *           multiplying B by transpose of left singular vectors
00568 *        (CWorkspace: none)
00569 *        (RWorkspace: need BDSPAC)
00570 *
00571          CALL CBDSQR( 'L', M, N, 0, NRHS, S, RWORK( IE ), A, LDA, VDUM,
00572      $                1, B, LDB, RWORK( IRWORK ), INFO )
00573          IF( INFO.NE.0 )
00574      $      GO TO 70
00575 *
00576 *        Multiply B by reciprocals of singular values
00577 *
00578          THR = MAX( RCOND*S( 1 ), SFMIN )
00579          IF( RCOND.LT.ZERO )
00580      $      THR = MAX( EPS*S( 1 ), SFMIN )
00581          RANK = 0
00582          DO 50 I = 1, M
00583             IF( S( I ).GT.THR ) THEN
00584                CALL CSRSCL( NRHS, S( I ), B( I, 1 ), LDB )
00585                RANK = RANK + 1
00586             ELSE
00587                CALL CLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
00588             END IF
00589    50    CONTINUE
00590 *
00591 *        Multiply B by right singular vectors of A
00592 *        (CWorkspace: need N, prefer N*NRHS)
00593 *        (RWorkspace: none)
00594 *
00595          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
00596             CALL CGEMM( 'C', 'N', N, NRHS, M, CONE, A, LDA, B, LDB,
00597      $                  CZERO, WORK, LDB )
00598             CALL CLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
00599          ELSE IF( NRHS.GT.1 ) THEN
00600             CHUNK = LWORK / N
00601             DO 60 I = 1, NRHS, CHUNK
00602                BL = MIN( NRHS-I+1, CHUNK )
00603                CALL CGEMM( 'C', 'N', N, BL, M, CONE, A, LDA, B( 1, I ),
00604      $                     LDB, CZERO, WORK, N )
00605                CALL CLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
00606    60       CONTINUE
00607          ELSE
00608             CALL CGEMV( 'C', M, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
00609             CALL CCOPY( N, WORK, 1, B, 1 )
00610          END IF
00611       END IF
00612 *
00613 *     Undo scaling
00614 *
00615       IF( IASCL.EQ.1 ) THEN
00616          CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
00617          CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
00618      $                INFO )
00619       ELSE IF( IASCL.EQ.2 ) THEN
00620          CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
00621          CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
00622      $                INFO )
00623       END IF
00624       IF( IBSCL.EQ.1 ) THEN
00625          CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
00626       ELSE IF( IBSCL.EQ.2 ) THEN
00627          CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
00628       END IF
00629    70 CONTINUE
00630       WORK( 1 ) = MAXWRK
00631       RETURN
00632 *
00633 *     End of CGELSS
00634 *
00635       END
 All Files Functions