LAPACK 3.3.0

sgeequ.f

Go to the documentation of this file.
00001       SUBROUTINE SGEEQU( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
00002      $                   INFO )
00003 *
00004 *  -- LAPACK routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       INTEGER            INFO, LDA, M, N
00011       REAL               AMAX, COLCND, ROWCND
00012 *     ..
00013 *     .. Array Arguments ..
00014       REAL               A( LDA, * ), C( * ), R( * )
00015 *     ..
00016 *
00017 *  Purpose
00018 *  =======
00019 *
00020 *  SGEEQU computes row and column scalings intended to equilibrate an
00021 *  M-by-N matrix A and reduce its condition number.  R returns the row
00022 *  scale factors and C the column scale factors, chosen to try to make
00023 *  the largest element in each row and column of the matrix B with
00024 *  elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
00025 *
00026 *  R(i) and C(j) are restricted to be between SMLNUM = smallest safe
00027 *  number and BIGNUM = largest safe number.  Use of these scaling
00028 *  factors is not guaranteed to reduce the condition number of A but
00029 *  works well in practice.
00030 *
00031 *  Arguments
00032 *  =========
00033 *
00034 *  M       (input) INTEGER
00035 *          The number of rows of the matrix A.  M >= 0.
00036 *
00037 *  N       (input) INTEGER
00038 *          The number of columns of the matrix A.  N >= 0.
00039 *
00040 *  A       (input) REAL array, dimension (LDA,N)
00041 *          The M-by-N matrix whose equilibration factors are
00042 *          to be computed.
00043 *
00044 *  LDA     (input) INTEGER
00045 *          The leading dimension of the array A.  LDA >= max(1,M).
00046 *
00047 *  R       (output) REAL array, dimension (M)
00048 *          If INFO = 0 or INFO > M, R contains the row scale factors
00049 *          for A.
00050 *
00051 *  C       (output) REAL array, dimension (N)
00052 *          If INFO = 0,  C contains the column scale factors for A.
00053 *
00054 *  ROWCND  (output) REAL
00055 *          If INFO = 0 or INFO > M, ROWCND contains the ratio of the
00056 *          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and
00057 *          AMAX is neither too large nor too small, it is not worth
00058 *          scaling by R.
00059 *
00060 *  COLCND  (output) REAL
00061 *          If INFO = 0, COLCND contains the ratio of the smallest
00062 *          C(i) to the largest C(i).  If COLCND >= 0.1, it is not
00063 *          worth scaling by C.
00064 *
00065 *  AMAX    (output) REAL
00066 *          Absolute value of largest matrix element.  If AMAX is very
00067 *          close to overflow or very close to underflow, the matrix
00068 *          should be scaled.
00069 *
00070 *  INFO    (output) INTEGER
00071 *          = 0:  successful exit
00072 *          < 0:  if INFO = -i, the i-th argument had an illegal value
00073 *          > 0:  if INFO = i,  and i is
00074 *                <= M:  the i-th row of A is exactly zero
00075 *                >  M:  the (i-M)-th column of A is exactly zero
00076 *
00077 *  =====================================================================
00078 *
00079 *     .. Parameters ..
00080       REAL               ONE, ZERO
00081       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
00082 *     ..
00083 *     .. Local Scalars ..
00084       INTEGER            I, J
00085       REAL               BIGNUM, RCMAX, RCMIN, SMLNUM
00086 *     ..
00087 *     .. External Functions ..
00088       REAL               SLAMCH
00089       EXTERNAL           SLAMCH
00090 *     ..
00091 *     .. External Subroutines ..
00092       EXTERNAL           XERBLA
00093 *     ..
00094 *     .. Intrinsic Functions ..
00095       INTRINSIC          ABS, MAX, MIN
00096 *     ..
00097 *     .. Executable Statements ..
00098 *
00099 *     Test the input parameters.
00100 *
00101       INFO = 0
00102       IF( M.LT.0 ) THEN
00103          INFO = -1
00104       ELSE IF( N.LT.0 ) THEN
00105          INFO = -2
00106       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
00107          INFO = -4
00108       END IF
00109       IF( INFO.NE.0 ) THEN
00110          CALL XERBLA( 'SGEEQU', -INFO )
00111          RETURN
00112       END IF
00113 *
00114 *     Quick return if possible
00115 *
00116       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
00117          ROWCND = ONE
00118          COLCND = ONE
00119          AMAX = ZERO
00120          RETURN
00121       END IF
00122 *
00123 *     Get machine constants.
00124 *
00125       SMLNUM = SLAMCH( 'S' )
00126       BIGNUM = ONE / SMLNUM
00127 *
00128 *     Compute row scale factors.
00129 *
00130       DO 10 I = 1, M
00131          R( I ) = ZERO
00132    10 CONTINUE
00133 *
00134 *     Find the maximum element in each row.
00135 *
00136       DO 30 J = 1, N
00137          DO 20 I = 1, M
00138             R( I ) = MAX( R( I ), ABS( A( I, J ) ) )
00139    20    CONTINUE
00140    30 CONTINUE
00141 *
00142 *     Find the maximum and minimum scale factors.
00143 *
00144       RCMIN = BIGNUM
00145       RCMAX = ZERO
00146       DO 40 I = 1, M
00147          RCMAX = MAX( RCMAX, R( I ) )
00148          RCMIN = MIN( RCMIN, R( I ) )
00149    40 CONTINUE
00150       AMAX = RCMAX
00151 *
00152       IF( RCMIN.EQ.ZERO ) THEN
00153 *
00154 *        Find the first zero scale factor and return an error code.
00155 *
00156          DO 50 I = 1, M
00157             IF( R( I ).EQ.ZERO ) THEN
00158                INFO = I
00159                RETURN
00160             END IF
00161    50    CONTINUE
00162       ELSE
00163 *
00164 *        Invert the scale factors.
00165 *
00166          DO 60 I = 1, M
00167             R( I ) = ONE / MIN( MAX( R( I ), SMLNUM ), BIGNUM )
00168    60    CONTINUE
00169 *
00170 *        Compute ROWCND = min(R(I)) / max(R(I))
00171 *
00172          ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
00173       END IF
00174 *
00175 *     Compute column scale factors
00176 *
00177       DO 70 J = 1, N
00178          C( J ) = ZERO
00179    70 CONTINUE
00180 *
00181 *     Find the maximum element in each column,
00182 *     assuming the row scaling computed above.
00183 *
00184       DO 90 J = 1, N
00185          DO 80 I = 1, M
00186             C( J ) = MAX( C( J ), ABS( A( I, J ) )*R( I ) )
00187    80    CONTINUE
00188    90 CONTINUE
00189 *
00190 *     Find the maximum and minimum scale factors.
00191 *
00192       RCMIN = BIGNUM
00193       RCMAX = ZERO
00194       DO 100 J = 1, N
00195          RCMIN = MIN( RCMIN, C( J ) )
00196          RCMAX = MAX( RCMAX, C( J ) )
00197   100 CONTINUE
00198 *
00199       IF( RCMIN.EQ.ZERO ) THEN
00200 *
00201 *        Find the first zero scale factor and return an error code.
00202 *
00203          DO 110 J = 1, N
00204             IF( C( J ).EQ.ZERO ) THEN
00205                INFO = M + J
00206                RETURN
00207             END IF
00208   110    CONTINUE
00209       ELSE
00210 *
00211 *        Invert the scale factors.
00212 *
00213          DO 120 J = 1, N
00214             C( J ) = ONE / MIN( MAX( C( J ), SMLNUM ), BIGNUM )
00215   120    CONTINUE
00216 *
00217 *        Compute COLCND = min(C(J)) / max(C(J))
00218 *
00219          COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
00220       END IF
00221 *
00222       RETURN
00223 *
00224 *     End of SGEEQU
00225 *
00226       END
 All Files Functions