LAPACK 3.3.0
|
00001 RECURSIVE SUBROUTINE ZUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, 00002 $ SIGNS, M, P, Q, X11, LDX11, X12, 00003 $ LDX12, X21, LDX21, X22, LDX22, THETA, 00004 $ U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, 00005 $ LDV2T, WORK, LWORK, RWORK, LRWORK, 00006 $ IWORK, INFO ) 00007 IMPLICIT NONE 00008 * 00009 * -- LAPACK routine (version 3.3.0) -- 00010 * 00011 * -- Contributed by Brian Sutton of the Randolph-Macon College -- 00012 * -- November 2010 00013 * 00014 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00015 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00016 * 00017 * .. Scalar Arguments .. 00018 CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS 00019 INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12, 00020 $ LDX21, LDX22, LRWORK, LWORK, M, P, Q 00021 * .. 00022 * .. Array Arguments .. 00023 INTEGER IWORK( * ) 00024 DOUBLE PRECISION THETA( * ) 00025 DOUBLE PRECISION RWORK( * ) 00026 COMPLEX*16 U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), 00027 $ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ), 00028 $ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22, 00029 $ * ) 00030 * .. 00031 * 00032 * Purpose 00033 * ======= 00034 * 00035 * ZUNCSD computes the CS decomposition of an M-by-M partitioned 00036 * unitary matrix X: 00037 * 00038 * [ I 0 0 | 0 0 0 ] 00039 * [ 0 C 0 | 0 -S 0 ] 00040 * [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**H 00041 * X = [-----------] = [---------] [---------------------] [---------] . 00042 * [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] 00043 * [ 0 S 0 | 0 C 0 ] 00044 * [ 0 0 I | 0 0 0 ] 00045 * 00046 * X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P, 00047 * (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are 00048 * R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in 00049 * which R = MIN(P,M-P,Q,M-Q). 00050 * 00051 * Arguments 00052 * ========= 00053 * 00054 * JOBU1 (input) CHARACTER 00055 * = 'Y': U1 is computed; 00056 * otherwise: U1 is not computed. 00057 * 00058 * JOBU2 (input) CHARACTER 00059 * = 'Y': U2 is computed; 00060 * otherwise: U2 is not computed. 00061 * 00062 * JOBV1T (input) CHARACTER 00063 * = 'Y': V1T is computed; 00064 * otherwise: V1T is not computed. 00065 * 00066 * JOBV2T (input) CHARACTER 00067 * = 'Y': V2T is computed; 00068 * otherwise: V2T is not computed. 00069 * 00070 * TRANS (input) CHARACTER 00071 * = 'T': X, U1, U2, V1T, and V2T are stored in row-major 00072 * order; 00073 * otherwise: X, U1, U2, V1T, and V2T are stored in column- 00074 * major order. 00075 * 00076 * SIGNS (input) CHARACTER 00077 * = 'O': The lower-left block is made nonpositive (the 00078 * "other" convention); 00079 * otherwise: The upper-right block is made nonpositive (the 00080 * "default" convention). 00081 * 00082 * M (input) INTEGER 00083 * The number of rows and columns in X. 00084 * 00085 * P (input) INTEGER 00086 * The number of rows in X11 and X12. 0 <= P <= M. 00087 * 00088 * Q (input) INTEGER 00089 * The number of columns in X11 and X21. 0 <= Q <= M. 00090 * 00091 * X (input/workspace) COMPLEX*16 array, dimension (LDX,M) 00092 * On entry, the unitary matrix whose CSD is desired. 00093 * 00094 * LDX (input) INTEGER 00095 * The leading dimension of X. LDX >= MAX(1,M). 00096 * 00097 * THETA (output) DOUBLE PRECISION array, dimension (R), in which R = 00098 * MIN(P,M-P,Q,M-Q). 00099 * C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and 00100 * S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). 00101 * 00102 * U1 (output) COMPLEX*16 array, dimension (P) 00103 * If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1. 00104 * 00105 * LDU1 (input) INTEGER 00106 * The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= 00107 * MAX(1,P). 00108 * 00109 * U2 (output) COMPLEX*16 array, dimension (M-P) 00110 * If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary 00111 * matrix U2. 00112 * 00113 * LDU2 (input) INTEGER 00114 * The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= 00115 * MAX(1,M-P). 00116 * 00117 * V1T (output) COMPLEX*16 array, dimension (Q) 00118 * If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary 00119 * matrix V1**H. 00120 * 00121 * LDV1T (input) INTEGER 00122 * The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= 00123 * MAX(1,Q). 00124 * 00125 * V2T (output) COMPLEX*16 array, dimension (M-Q) 00126 * If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary 00127 * matrix V2**H. 00128 * 00129 * LDV2T (input) INTEGER 00130 * The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >= 00131 * MAX(1,M-Q). 00132 * 00133 * WORK (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) 00134 * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. 00135 * 00136 * LWORK (input) INTEGER 00137 * The dimension of the array WORK. 00138 * 00139 * If LWORK = -1, then a workspace query is assumed; the routine 00140 * only calculates the optimal size of the WORK array, returns 00141 * this value as the first entry of the work array, and no error 00142 * message related to LWORK is issued by XERBLA. 00143 * 00144 * RWORK (workspace) DOUBLE PRECISION array, dimension MAX(1,LRWORK) 00145 * On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. 00146 * If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1), 00147 * ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), 00148 * define the matrix in intermediate bidiagonal-block form 00149 * remaining after nonconvergence. INFO specifies the number 00150 * of nonzero PHI's. 00151 * 00152 * LRWORK (input) INTEGER 00153 * The dimension of the array RWORK. 00154 * 00155 * If LRWORK = -1, then a workspace query is assumed; the routine 00156 * only calculates the optimal size of the RWORK array, returns 00157 * this value as the first entry of the work array, and no error 00158 * message related to LRWORK is issued by XERBLA. 00159 * 00160 * IWORK (workspace) INTEGER array, dimension (M-Q) 00161 * 00162 * INFO (output) INTEGER 00163 * = 0: successful exit. 00164 * < 0: if INFO = -i, the i-th argument had an illegal value. 00165 * > 0: ZBBCSD did not converge. See the description of RWORK 00166 * above for details. 00167 * 00168 * Reference 00169 * ========= 00170 * 00171 * [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. 00172 * Algorithms, 50(1):33-65, 2009. 00173 * 00174 * =================================================================== 00175 * 00176 * .. Parameters .. 00177 DOUBLE PRECISION REALONE 00178 PARAMETER ( REALONE = 1.0D0 ) 00179 COMPLEX*16 NEGONE, ONE, PIOVER2, ZERO 00180 PARAMETER ( NEGONE = (-1.0D0,0.0D0), ONE = (1.0D0,0.0D0), 00181 $ PIOVER2 = 1.57079632679489662D0, 00182 $ ZERO = (0.0D0,0.0D0) ) 00183 * .. 00184 * .. Local Scalars .. 00185 CHARACTER TRANST, SIGNST 00186 INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E, 00187 $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB, 00188 $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1, 00189 $ ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN, 00190 $ LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN, 00191 $ LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN, 00192 $ LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN, 00193 $ LORGQRWORKOPT, LWORKMIN, LWORKOPT 00194 LOGICAL COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2, 00195 $ WANTV1T, WANTV2T 00196 INTEGER LRWORKMIN, LRWORKOPT 00197 LOGICAL LRQUERY 00198 * .. 00199 * .. External Subroutines .. 00200 EXTERNAL XERBLA, ZBBCSD, ZLACPY, ZLAPMR, ZLAPMT, ZLASCL, 00201 $ ZLASET, ZUNBDB, ZUNGLQ, ZUNGQR 00202 * .. 00203 * .. External Functions .. 00204 LOGICAL LSAME 00205 EXTERNAL LSAME 00206 * .. 00207 * .. Intrinsic Functions 00208 INTRINSIC COS, INT, MAX, MIN, SIN 00209 * .. 00210 * .. Executable Statements .. 00211 * 00212 * Test input arguments 00213 * 00214 INFO = 0 00215 WANTU1 = LSAME( JOBU1, 'Y' ) 00216 WANTU2 = LSAME( JOBU2, 'Y' ) 00217 WANTV1T = LSAME( JOBV1T, 'Y' ) 00218 WANTV2T = LSAME( JOBV2T, 'Y' ) 00219 COLMAJOR = .NOT. LSAME( TRANS, 'T' ) 00220 DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' ) 00221 LQUERY = LWORK .EQ. -1 00222 LRQUERY = LRWORK .EQ. -1 00223 IF( M .LT. 0 ) THEN 00224 INFO = -7 00225 ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN 00226 INFO = -8 00227 ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN 00228 INFO = -9 00229 ELSE IF( ( COLMAJOR .AND. LDX11 .LT. MAX(1,P) ) .OR. 00230 $ ( .NOT.COLMAJOR .AND. LDX11 .LT. MAX(1,Q) ) ) THEN 00231 INFO = -11 00232 ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN 00233 INFO = -14 00234 ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN 00235 INFO = -16 00236 ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN 00237 INFO = -18 00238 ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN 00239 INFO = -20 00240 END IF 00241 * 00242 * Work with transpose if convenient 00243 * 00244 IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN 00245 IF( COLMAJOR ) THEN 00246 TRANST = 'T' 00247 ELSE 00248 TRANST = 'N' 00249 END IF 00250 IF( DEFAULTSIGNS ) THEN 00251 SIGNST = 'O' 00252 ELSE 00253 SIGNST = 'D' 00254 END IF 00255 CALL ZUNCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, M, 00256 $ Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22, 00257 $ LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1, 00258 $ U2, LDU2, WORK, LWORK, RWORK, LRWORK, IWORK, 00259 $ INFO ) 00260 RETURN 00261 END IF 00262 * 00263 * Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if 00264 * convenient 00265 * 00266 IF( INFO .EQ. 0 .AND. M-Q .LT. Q ) THEN 00267 IF( DEFAULTSIGNS ) THEN 00268 SIGNST = 'O' 00269 ELSE 00270 SIGNST = 'D' 00271 END IF 00272 CALL ZUNCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M, 00273 $ M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11, 00274 $ LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T, 00275 $ LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK, INFO ) 00276 RETURN 00277 END IF 00278 * 00279 * Compute workspace 00280 * 00281 IF( INFO .EQ. 0 ) THEN 00282 * 00283 * Real workspace 00284 * 00285 IPHI = 2 00286 IB11D = IPHI + MAX( 1, Q - 1 ) 00287 IB11E = IB11D + MAX( 1, Q ) 00288 IB12D = IB11E + MAX( 1, Q - 1 ) 00289 IB12E = IB12D + MAX( 1, Q ) 00290 IB21D = IB12E + MAX( 1, Q - 1 ) 00291 IB21E = IB21D + MAX( 1, Q ) 00292 IB22D = IB21E + MAX( 1, Q - 1 ) 00293 IB22E = IB22D + MAX( 1, Q ) 00294 IBBCSD = IB22E + MAX( 1, Q - 1 ) 00295 CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, 0, 00296 $ 0, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, 0, 00297 $ 0, 0, 0, 0, 0, 0, 0, RWORK, -1, CHILDINFO ) 00298 LBBCSDWORKOPT = INT( RWORK(1) ) 00299 LBBCSDWORKMIN = LBBCSDWORKOPT 00300 LRWORKOPT = IBBCSD + LBBCSDWORKOPT - 1 00301 LRWORKMIN = IBBCSD + LBBCSDWORKMIN - 1 00302 RWORK(1) = LRWORKOPT 00303 * 00304 * Complex workspace 00305 * 00306 ITAUP1 = 2 00307 ITAUP2 = ITAUP1 + MAX( 1, P ) 00308 ITAUQ1 = ITAUP2 + MAX( 1, M - P ) 00309 ITAUQ2 = ITAUQ1 + MAX( 1, Q ) 00310 IORGQR = ITAUQ2 + MAX( 1, M - Q ) 00311 CALL ZUNGQR( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), 0, WORK, -1, 00312 $ CHILDINFO ) 00313 LORGQRWORKOPT = INT( WORK(1) ) 00314 LORGQRWORKMIN = MAX( 1, M - Q ) 00315 IORGLQ = ITAUQ2 + MAX( 1, M - Q ) 00316 CALL ZUNGLQ( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), 0, WORK, -1, 00317 $ CHILDINFO ) 00318 LORGLQWORKOPT = INT( WORK(1) ) 00319 LORGLQWORKMIN = MAX( 1, M - Q ) 00320 IORBDB = ITAUQ2 + MAX( 1, M - Q ) 00321 CALL ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, 00322 $ X21, LDX21, X22, LDX22, 0, 0, 0, 0, 0, 0, WORK, 00323 $ -1, CHILDINFO ) 00324 LORBDBWORKOPT = INT( WORK(1) ) 00325 LORBDBWORKMIN = LORBDBWORKOPT 00326 LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT, 00327 $ IORBDB + LORBDBWORKOPT ) - 1 00328 LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN, 00329 $ IORBDB + LORBDBWORKMIN ) - 1 00330 WORK(1) = LWORKOPT 00331 * 00332 IF( LWORK .LT. LWORKMIN 00333 $ .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN 00334 INFO = -22 00335 ELSE IF( LRWORK .LT. LRWORKMIN 00336 $ .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN 00337 INFO = -24 00338 ELSE 00339 LORGQRWORK = LWORK - IORGQR + 1 00340 LORGLQWORK = LWORK - IORGLQ + 1 00341 LORBDBWORK = LWORK - IORBDB + 1 00342 LBBCSDWORK = LRWORK - IBBCSD + 1 00343 END IF 00344 END IF 00345 * 00346 * Abort if any illegal arguments 00347 * 00348 IF( INFO .NE. 0 ) THEN 00349 CALL XERBLA( 'ZUNCSD', -INFO ) 00350 RETURN 00351 ELSE IF( LQUERY .OR. LRQUERY ) THEN 00352 RETURN 00353 END IF 00354 * 00355 * Transform to bidiagonal block form 00356 * 00357 CALL ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21, 00358 $ LDX21, X22, LDX22, THETA, RWORK(IPHI), WORK(ITAUP1), 00359 $ WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2), 00360 $ WORK(IORBDB), LORBDBWORK, CHILDINFO ) 00361 * 00362 * Accumulate Householder reflectors 00363 * 00364 IF( COLMAJOR ) THEN 00365 IF( WANTU1 .AND. P .GT. 0 ) THEN 00366 CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 ) 00367 CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR), 00368 $ LORGQRWORK, INFO) 00369 END IF 00370 IF( WANTU2 .AND. M-P .GT. 0 ) THEN 00371 CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 ) 00372 CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2), 00373 $ WORK(IORGQR), LORGQRWORK, INFO ) 00374 END IF 00375 IF( WANTV1T .AND. Q .GT. 0 ) THEN 00376 CALL ZLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2), 00377 $ LDV1T ) 00378 V1T(1, 1) = ONE 00379 DO J = 2, Q 00380 V1T(1,J) = ZERO 00381 V1T(J,1) = ZERO 00382 END DO 00383 CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1), 00384 $ WORK(IORGLQ), LORGLQWORK, INFO ) 00385 END IF 00386 IF( WANTV2T .AND. M-Q .GT. 0 ) THEN 00387 CALL ZLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T ) 00388 CALL ZLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22, 00389 $ V2T(P+1,P+1), LDV2T ) 00390 CALL ZUNGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2), 00391 $ WORK(IORGLQ), LORGLQWORK, INFO ) 00392 END IF 00393 ELSE 00394 IF( WANTU1 .AND. P .GT. 0 ) THEN 00395 CALL ZLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 ) 00396 CALL ZUNGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGLQ), 00397 $ LORGLQWORK, INFO) 00398 END IF 00399 IF( WANTU2 .AND. M-P .GT. 0 ) THEN 00400 CALL ZLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 ) 00401 CALL ZUNGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2), 00402 $ WORK(IORGLQ), LORGLQWORK, INFO ) 00403 END IF 00404 IF( WANTV1T .AND. Q .GT. 0 ) THEN 00405 CALL ZLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2), 00406 $ LDV1T ) 00407 V1T(1, 1) = ONE 00408 DO J = 2, Q 00409 V1T(1,J) = ZERO 00410 V1T(J,1) = ZERO 00411 END DO 00412 CALL ZUNGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1), 00413 $ WORK(IORGQR), LORGQRWORK, INFO ) 00414 END IF 00415 IF( WANTV2T .AND. M-Q .GT. 0 ) THEN 00416 CALL ZLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T ) 00417 CALL ZLACPY( 'L', M-P-Q, M-P-Q, X22(P+1,Q+1), LDX22, 00418 $ V2T(P+1,P+1), LDV2T ) 00419 CALL ZUNGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2), 00420 $ WORK(IORGQR), LORGQRWORK, INFO ) 00421 END IF 00422 END IF 00423 * 00424 * Compute the CSD of the matrix in bidiagonal-block form 00425 * 00426 CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA, 00427 $ RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, 00428 $ LDV2T, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D), 00429 $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E), 00430 $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), 00431 $ LBBCSDWORK, INFO ) 00432 * 00433 * Permute rows and columns to place identity submatrices in top- 00434 * left corner of (1,1)-block and/or bottom-right corner of (1,2)- 00435 * block and/or bottom-right corner of (2,1)-block and/or top-left 00436 * corner of (2,2)-block 00437 * 00438 IF( Q .GT. 0 .AND. WANTU2 ) THEN 00439 DO I = 1, Q 00440 IWORK(I) = M - P - Q + I 00441 END DO 00442 DO I = Q + 1, M - P 00443 IWORK(I) = I - Q 00444 END DO 00445 IF( COLMAJOR ) THEN 00446 CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK ) 00447 ELSE 00448 CALL ZLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK ) 00449 END IF 00450 END IF 00451 IF( M .GT. 0 .AND. WANTV2T ) THEN 00452 DO I = 1, P 00453 IWORK(I) = M - P - Q + I 00454 END DO 00455 DO I = P + 1, M - Q 00456 IWORK(I) = I - P 00457 END DO 00458 IF( .NOT. COLMAJOR ) THEN 00459 CALL ZLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK ) 00460 ELSE 00461 CALL ZLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK ) 00462 END IF 00463 END IF 00464 * 00465 RETURN 00466 * 00467 * End ZUNCSD 00468 * 00469 END 00470