LAPACK 3.3.0

dpotf2.f

Go to the documentation of this file.
00001       SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO )
00002 *
00003 *  -- LAPACK routine (version 3.2) --
00004 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00005 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00006 *     November 2006
00007 *
00008 *     .. Scalar Arguments ..
00009       CHARACTER          UPLO
00010       INTEGER            INFO, LDA, N
00011 *     ..
00012 *     .. Array Arguments ..
00013       DOUBLE PRECISION   A( LDA, * )
00014 *     ..
00015 *
00016 *  Purpose
00017 *  =======
00018 *
00019 *  DPOTF2 computes the Cholesky factorization of a real symmetric
00020 *  positive definite matrix A.
00021 *
00022 *  The factorization has the form
00023 *     A = U' * U ,  if UPLO = 'U', or
00024 *     A = L  * L',  if UPLO = 'L',
00025 *  where U is an upper triangular matrix and L is lower triangular.
00026 *
00027 *  This is the unblocked version of the algorithm, calling Level 2 BLAS.
00028 *
00029 *  Arguments
00030 *  =========
00031 *
00032 *  UPLO    (input) CHARACTER*1
00033 *          Specifies whether the upper or lower triangular part of the
00034 *          symmetric matrix A is stored.
00035 *          = 'U':  Upper triangular
00036 *          = 'L':  Lower triangular
00037 *
00038 *  N       (input) INTEGER
00039 *          The order of the matrix A.  N >= 0.
00040 *
00041 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
00042 *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
00043 *          n by n upper triangular part of A contains the upper
00044 *          triangular part of the matrix A, and the strictly lower
00045 *          triangular part of A is not referenced.  If UPLO = 'L', the
00046 *          leading n by n lower triangular part of A contains the lower
00047 *          triangular part of the matrix A, and the strictly upper
00048 *          triangular part of A is not referenced.
00049 *
00050 *          On exit, if INFO = 0, the factor U or L from the Cholesky
00051 *          factorization A = U'*U  or A = L*L'.
00052 *
00053 *  LDA     (input) INTEGER
00054 *          The leading dimension of the array A.  LDA >= max(1,N).
00055 *
00056 *  INFO    (output) INTEGER
00057 *          = 0: successful exit
00058 *          < 0: if INFO = -k, the k-th argument had an illegal value
00059 *          > 0: if INFO = k, the leading minor of order k is not
00060 *               positive definite, and the factorization could not be
00061 *               completed.
00062 *
00063 *  =====================================================================
00064 *
00065 *     .. Parameters ..
00066       DOUBLE PRECISION   ONE, ZERO
00067       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
00068 *     ..
00069 *     .. Local Scalars ..
00070       LOGICAL            UPPER
00071       INTEGER            J
00072       DOUBLE PRECISION   AJJ
00073 *     ..
00074 *     .. External Functions ..
00075       LOGICAL            LSAME, DISNAN
00076       DOUBLE PRECISION   DDOT
00077       EXTERNAL           LSAME, DDOT, DISNAN
00078 *     ..
00079 *     .. External Subroutines ..
00080       EXTERNAL           DGEMV, DSCAL, XERBLA
00081 *     ..
00082 *     .. Intrinsic Functions ..
00083       INTRINSIC          MAX, SQRT
00084 *     ..
00085 *     .. Executable Statements ..
00086 *
00087 *     Test the input parameters.
00088 *
00089       INFO = 0
00090       UPPER = LSAME( UPLO, 'U' )
00091       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
00092          INFO = -1
00093       ELSE IF( N.LT.0 ) THEN
00094          INFO = -2
00095       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
00096          INFO = -4
00097       END IF
00098       IF( INFO.NE.0 ) THEN
00099          CALL XERBLA( 'DPOTF2', -INFO )
00100          RETURN
00101       END IF
00102 *
00103 *     Quick return if possible
00104 *
00105       IF( N.EQ.0 )
00106      $   RETURN
00107 *
00108       IF( UPPER ) THEN
00109 *
00110 *        Compute the Cholesky factorization A = U'*U.
00111 *
00112          DO 10 J = 1, N
00113 *
00114 *           Compute U(J,J) and test for non-positive-definiteness.
00115 *
00116             AJJ = A( J, J ) - DDOT( J-1, A( 1, J ), 1, A( 1, J ), 1 )
00117             IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
00118                A( J, J ) = AJJ
00119                GO TO 30
00120             END IF
00121             AJJ = SQRT( AJJ )
00122             A( J, J ) = AJJ
00123 *
00124 *           Compute elements J+1:N of row J.
00125 *
00126             IF( J.LT.N ) THEN
00127                CALL DGEMV( 'Transpose', J-1, N-J, -ONE, A( 1, J+1 ),
00128      $                     LDA, A( 1, J ), 1, ONE, A( J, J+1 ), LDA )
00129                CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
00130             END IF
00131    10    CONTINUE
00132       ELSE
00133 *
00134 *        Compute the Cholesky factorization A = L*L'.
00135 *
00136          DO 20 J = 1, N
00137 *
00138 *           Compute L(J,J) and test for non-positive-definiteness.
00139 *
00140             AJJ = A( J, J ) - DDOT( J-1, A( J, 1 ), LDA, A( J, 1 ),
00141      $            LDA )
00142             IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
00143                A( J, J ) = AJJ
00144                GO TO 30
00145             END IF
00146             AJJ = SQRT( AJJ )
00147             A( J, J ) = AJJ
00148 *
00149 *           Compute elements J+1:N of column J.
00150 *
00151             IF( J.LT.N ) THEN
00152                CALL DGEMV( 'No transpose', N-J, J-1, -ONE, A( J+1, 1 ),
00153      $                     LDA, A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )
00154                CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
00155             END IF
00156    20    CONTINUE
00157       END IF
00158       GO TO 40
00159 *
00160    30 CONTINUE
00161       INFO = J
00162 *
00163    40 CONTINUE
00164       RETURN
00165 *
00166 *     End of DPOTF2
00167 *
00168       END
 All Files Functions