LAPACK 3.3.0

dlasd3.f

Go to the documentation of this file.
00001       SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
00002      $                   LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
00003      $                   INFO )
00004 *
00005 *  -- LAPACK auxiliary routine (version 3.2.2) --
00006 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00007 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00008 *     June 2010
00009 *
00010 *     .. Scalar Arguments ..
00011       INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
00012      $                   SQRE
00013 *     ..
00014 *     .. Array Arguments ..
00015       INTEGER            CTOT( * ), IDXC( * )
00016       DOUBLE PRECISION   D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
00017      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
00018      $                   Z( * )
00019 *     ..
00020 *
00021 *  Purpose
00022 *  =======
00023 *
00024 *  DLASD3 finds all the square roots of the roots of the secular
00025 *  equation, as defined by the values in D and Z.  It makes the
00026 *  appropriate calls to DLASD4 and then updates the singular
00027 *  vectors by matrix multiplication.
00028 *
00029 *  This code makes very mild assumptions about floating point
00030 *  arithmetic. It will work on machines with a guard digit in
00031 *  add/subtract, or on those binary machines without guard digits
00032 *  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
00033 *  It could conceivably fail on hexadecimal or decimal machines
00034 *  without guard digits, but we know of none.
00035 *
00036 *  DLASD3 is called from DLASD1.
00037 *
00038 *  Arguments
00039 *  =========
00040 *
00041 *  NL     (input) INTEGER
00042 *         The row dimension of the upper block.  NL >= 1.
00043 *
00044 *  NR     (input) INTEGER
00045 *         The row dimension of the lower block.  NR >= 1.
00046 *
00047 *  SQRE   (input) INTEGER
00048 *         = 0: the lower block is an NR-by-NR square matrix.
00049 *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
00050 *
00051 *         The bidiagonal matrix has N = NL + NR + 1 rows and
00052 *         M = N + SQRE >= N columns.
00053 *
00054 *  K      (input) INTEGER
00055 *         The size of the secular equation, 1 =< K = < N.
00056 *
00057 *  D      (output) DOUBLE PRECISION array, dimension(K)
00058 *         On exit the square roots of the roots of the secular equation,
00059 *         in ascending order.
00060 *
00061 *  Q      (workspace) DOUBLE PRECISION array,
00062 *                     dimension at least (LDQ,K).
00063 *
00064 *  LDQ    (input) INTEGER
00065 *         The leading dimension of the array Q.  LDQ >= K.
00066 *
00067 *  DSIGMA (input) DOUBLE PRECISION array, dimension(K)
00068 *         The first K elements of this array contain the old roots
00069 *         of the deflated updating problem.  These are the poles
00070 *         of the secular equation.
00071 *
00072 *  U      (output) DOUBLE PRECISION array, dimension (LDU, N)
00073 *         The last N - K columns of this matrix contain the deflated
00074 *         left singular vectors.
00075 *
00076 *  LDU    (input) INTEGER
00077 *         The leading dimension of the array U.  LDU >= N.
00078 *
00079 *  U2     (input/output) DOUBLE PRECISION array, dimension (LDU2, N)
00080 *         The first K columns of this matrix contain the non-deflated
00081 *         left singular vectors for the split problem.
00082 *
00083 *  LDU2   (input) INTEGER
00084 *         The leading dimension of the array U2.  LDU2 >= N.
00085 *
00086 *  VT     (output) DOUBLE PRECISION array, dimension (LDVT, M)
00087 *         The last M - K columns of VT' contain the deflated
00088 *         right singular vectors.
00089 *
00090 *  LDVT   (input) INTEGER
00091 *         The leading dimension of the array VT.  LDVT >= N.
00092 *
00093 *  VT2    (input/output) DOUBLE PRECISION array, dimension (LDVT2, N)
00094 *         The first K columns of VT2' contain the non-deflated
00095 *         right singular vectors for the split problem.
00096 *
00097 *  LDVT2  (input) INTEGER
00098 *         The leading dimension of the array VT2.  LDVT2 >= N.
00099 *
00100 *  IDXC   (input) INTEGER array, dimension ( N )
00101 *         The permutation used to arrange the columns of U (and rows of
00102 *         VT) into three groups:  the first group contains non-zero
00103 *         entries only at and above (or before) NL +1; the second
00104 *         contains non-zero entries only at and below (or after) NL+2;
00105 *         and the third is dense. The first column of U and the row of
00106 *         VT are treated separately, however.
00107 *
00108 *         The rows of the singular vectors found by DLASD4
00109 *         must be likewise permuted before the matrix multiplies can
00110 *         take place.
00111 *
00112 *  CTOT   (input) INTEGER array, dimension ( 4 )
00113 *         A count of the total number of the various types of columns
00114 *         in U (or rows in VT), as described in IDXC. The fourth column
00115 *         type is any column which has been deflated.
00116 *
00117 *  Z      (input) DOUBLE PRECISION array, dimension (K)
00118 *         The first K elements of this array contain the components
00119 *         of the deflation-adjusted updating row vector.
00120 *
00121 *  INFO   (output) INTEGER
00122 *         = 0:  successful exit.
00123 *         < 0:  if INFO = -i, the i-th argument had an illegal value.
00124 *         > 0:  if INFO = 1, a singular value did not converge
00125 *
00126 *  Further Details
00127 *  ===============
00128 *
00129 *  Based on contributions by
00130 *     Ming Gu and Huan Ren, Computer Science Division, University of
00131 *     California at Berkeley, USA
00132 *
00133 *  =====================================================================
00134 *
00135 *     .. Parameters ..
00136       DOUBLE PRECISION   ONE, ZERO, NEGONE
00137       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0,
00138      $                   NEGONE = -1.0D+0 )
00139 *     ..
00140 *     .. Local Scalars ..
00141       INTEGER            CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
00142       DOUBLE PRECISION   RHO, TEMP
00143 *     ..
00144 *     .. External Functions ..
00145       DOUBLE PRECISION   DLAMC3, DNRM2
00146       EXTERNAL           DLAMC3, DNRM2
00147 *     ..
00148 *     .. External Subroutines ..
00149       EXTERNAL           DCOPY, DGEMM, DLACPY, DLASCL, DLASD4, XERBLA
00150 *     ..
00151 *     .. Intrinsic Functions ..
00152       INTRINSIC          ABS, SIGN, SQRT
00153 *     ..
00154 *     .. Executable Statements ..
00155 *
00156 *     Test the input parameters.
00157 *
00158       INFO = 0
00159 *
00160       IF( NL.LT.1 ) THEN
00161          INFO = -1
00162       ELSE IF( NR.LT.1 ) THEN
00163          INFO = -2
00164       ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
00165          INFO = -3
00166       END IF
00167 *
00168       N = NL + NR + 1
00169       M = N + SQRE
00170       NLP1 = NL + 1
00171       NLP2 = NL + 2
00172 *
00173       IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
00174          INFO = -4
00175       ELSE IF( LDQ.LT.K ) THEN
00176          INFO = -7
00177       ELSE IF( LDU.LT.N ) THEN
00178          INFO = -10
00179       ELSE IF( LDU2.LT.N ) THEN
00180          INFO = -12
00181       ELSE IF( LDVT.LT.M ) THEN
00182          INFO = -14
00183       ELSE IF( LDVT2.LT.M ) THEN
00184          INFO = -16
00185       END IF
00186       IF( INFO.NE.0 ) THEN
00187          CALL XERBLA( 'DLASD3', -INFO )
00188          RETURN
00189       END IF
00190 *
00191 *     Quick return if possible
00192 *
00193       IF( K.EQ.1 ) THEN
00194          D( 1 ) = ABS( Z( 1 ) )
00195          CALL DCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
00196          IF( Z( 1 ).GT.ZERO ) THEN
00197             CALL DCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
00198          ELSE
00199             DO 10 I = 1, N
00200                U( I, 1 ) = -U2( I, 1 )
00201    10       CONTINUE
00202          END IF
00203          RETURN
00204       END IF
00205 *
00206 *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
00207 *     be computed with high relative accuracy (barring over/underflow).
00208 *     This is a problem on machines without a guard digit in
00209 *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
00210 *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
00211 *     which on any of these machines zeros out the bottommost
00212 *     bit of DSIGMA(I) if it is 1; this makes the subsequent
00213 *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
00214 *     occurs. On binary machines with a guard digit (almost all
00215 *     machines) it does not change DSIGMA(I) at all. On hexadecimal
00216 *     and decimal machines with a guard digit, it slightly
00217 *     changes the bottommost bits of DSIGMA(I). It does not account
00218 *     for hexadecimal or decimal machines without guard digits
00219 *     (we know of none). We use a subroutine call to compute
00220 *     2*DSIGMA(I) to prevent optimizing compilers from eliminating
00221 *     this code.
00222 *
00223       DO 20 I = 1, K
00224          DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
00225    20 CONTINUE
00226 *
00227 *     Keep a copy of Z.
00228 *
00229       CALL DCOPY( K, Z, 1, Q, 1 )
00230 *
00231 *     Normalize Z.
00232 *
00233       RHO = DNRM2( K, Z, 1 )
00234       CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
00235       RHO = RHO*RHO
00236 *
00237 *     Find the new singular values.
00238 *
00239       DO 30 J = 1, K
00240          CALL DLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
00241      $                VT( 1, J ), INFO )
00242 *
00243 *        If the zero finder fails, the computation is terminated.
00244 *
00245          IF( INFO.NE.0 ) THEN
00246             RETURN
00247          END IF
00248    30 CONTINUE
00249 *
00250 *     Compute updated Z.
00251 *
00252       DO 60 I = 1, K
00253          Z( I ) = U( I, K )*VT( I, K )
00254          DO 40 J = 1, I - 1
00255             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
00256      $               ( DSIGMA( I )-DSIGMA( J ) ) /
00257      $               ( DSIGMA( I )+DSIGMA( J ) ) )
00258    40    CONTINUE
00259          DO 50 J = I, K - 1
00260             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
00261      $               ( DSIGMA( I )-DSIGMA( J+1 ) ) /
00262      $               ( DSIGMA( I )+DSIGMA( J+1 ) ) )
00263    50    CONTINUE
00264          Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
00265    60 CONTINUE
00266 *
00267 *     Compute left singular vectors of the modified diagonal matrix,
00268 *     and store related information for the right singular vectors.
00269 *
00270       DO 90 I = 1, K
00271          VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
00272          U( 1, I ) = NEGONE
00273          DO 70 J = 2, K
00274             VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
00275             U( J, I ) = DSIGMA( J )*VT( J, I )
00276    70    CONTINUE
00277          TEMP = DNRM2( K, U( 1, I ), 1 )
00278          Q( 1, I ) = U( 1, I ) / TEMP
00279          DO 80 J = 2, K
00280             JC = IDXC( J )
00281             Q( J, I ) = U( JC, I ) / TEMP
00282    80    CONTINUE
00283    90 CONTINUE
00284 *
00285 *     Update the left singular vector matrix.
00286 *
00287       IF( K.EQ.2 ) THEN
00288          CALL DGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
00289      $               LDU )
00290          GO TO 100
00291       END IF
00292       IF( CTOT( 1 ).GT.0 ) THEN
00293          CALL DGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
00294      $               Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
00295          IF( CTOT( 3 ).GT.0 ) THEN
00296             KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
00297             CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
00298      $                  LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
00299          END IF
00300       ELSE IF( CTOT( 3 ).GT.0 ) THEN
00301          KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
00302          CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
00303      $               LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
00304       ELSE
00305          CALL DLACPY( 'F', NL, K, U2, LDU2, U, LDU )
00306       END IF
00307       CALL DCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
00308       KTEMP = 2 + CTOT( 1 )
00309       CTEMP = CTOT( 2 ) + CTOT( 3 )
00310       CALL DGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
00311      $            Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
00312 *
00313 *     Generate the right singular vectors.
00314 *
00315   100 CONTINUE
00316       DO 120 I = 1, K
00317          TEMP = DNRM2( K, VT( 1, I ), 1 )
00318          Q( I, 1 ) = VT( 1, I ) / TEMP
00319          DO 110 J = 2, K
00320             JC = IDXC( J )
00321             Q( I, J ) = VT( JC, I ) / TEMP
00322   110    CONTINUE
00323   120 CONTINUE
00324 *
00325 *     Update the right singular vector matrix.
00326 *
00327       IF( K.EQ.2 ) THEN
00328          CALL DGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
00329      $               VT, LDVT )
00330          RETURN
00331       END IF
00332       KTEMP = 1 + CTOT( 1 )
00333       CALL DGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
00334      $            VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
00335       KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
00336       IF( KTEMP.LE.LDVT2 )
00337      $   CALL DGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
00338      $               LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
00339      $               LDVT )
00340 *
00341       KTEMP = CTOT( 1 ) + 1
00342       NRP1 = NR + SQRE
00343       IF( KTEMP.GT.1 ) THEN
00344          DO 130 I = 1, K
00345             Q( I, KTEMP ) = Q( I, 1 )
00346   130    CONTINUE
00347          DO 140 I = NLP2, M
00348             VT2( KTEMP, I ) = VT2( 1, I )
00349   140    CONTINUE
00350       END IF
00351       CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
00352       CALL DGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
00353      $            VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
00354 *
00355       RETURN
00356 *
00357 *     End of DLASD3
00358 *
00359       END
 All Files Functions