LAPACK 3.3.0

clanhf.f

Go to the documentation of this file.
00001       REAL FUNCTION CLANHF( NORM, TRANSR, UPLO, N, A, WORK )
00002 *
00003 *  -- LAPACK routine (version 3.2.1)                                    --
00004 *
00005 *  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
00006 *  -- April 2009                                                      --
00007 *
00008 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00009 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00010 *
00011 *     .. Scalar Arguments ..
00012       CHARACTER          NORM, TRANSR, UPLO
00013       INTEGER            N
00014 *     ..
00015 *     .. Array Arguments ..
00016       REAL               WORK( 0: * )
00017       COMPLEX            A( 0: * )
00018 *     ..
00019 *
00020 *  Purpose
00021 *  =======
00022 *
00023 *  CLANHF  returns the value of the one norm,  or the Frobenius norm, or
00024 *  the  infinity norm,  or the  element of  largest absolute value  of a
00025 *  complex Hermitian matrix A in RFP format.
00026 *
00027 *  Description
00028 *  ===========
00029 *
00030 *  CLANHF returns the value
00031 *
00032 *     CLANHF = ( max(abs(A(i,j))), NORM = 'M' or 'm'
00033 *              (
00034 *              ( norm1(A),         NORM = '1', 'O' or 'o'
00035 *              (
00036 *              ( normI(A),         NORM = 'I' or 'i'
00037 *              (
00038 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
00039 *
00040 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
00041 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
00042 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
00043 *  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.
00044 *
00045 *  Arguments
00046 *  =========
00047 *
00048 *  NORM      (input) CHARACTER
00049 *            Specifies the value to be returned in CLANHF as described
00050 *            above.
00051 *
00052 *  TRANSR    (input) CHARACTER
00053 *            Specifies whether the RFP format of A is normal or
00054 *            conjugate-transposed format.
00055 *            = 'N':  RFP format is Normal
00056 *            = 'C':  RFP format is Conjugate-transposed
00057 *
00058 *  UPLO      (input) CHARACTER
00059 *            On entry, UPLO specifies whether the RFP matrix A came from
00060 *            an upper or lower triangular matrix as follows:
00061 *
00062 *            UPLO = 'U' or 'u' RFP A came from an upper triangular
00063 *            matrix
00064 *
00065 *            UPLO = 'L' or 'l' RFP A came from a  lower triangular
00066 *            matrix
00067 *
00068 *  N         (input) INTEGER
00069 *            The order of the matrix A.  N >= 0.  When N = 0, CLANHF is
00070 *            set to zero.
00071 *
00072 *   A        (input) COMPLEX*16 array, dimension ( N*(N+1)/2 );
00073 *            On entry, the matrix A in RFP Format.
00074 *            RFP Format is described by TRANSR, UPLO and N as follows:
00075 *            If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;
00076 *            K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If
00077 *            TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A
00078 *            as defined when TRANSR = 'N'. The contents of RFP A are
00079 *            defined by UPLO as follows: If UPLO = 'U' the RFP A
00080 *            contains the ( N*(N+1)/2 ) elements of upper packed A
00081 *            either in normal or conjugate-transpose Format. If
00082 *            UPLO = 'L' the RFP A contains the ( N*(N+1) /2 ) elements
00083 *            of lower packed A either in normal or conjugate-transpose
00084 *            Format. The LDA of RFP A is (N+1)/2 when TRANSR = 'C'. When
00085 *            TRANSR is 'N' the LDA is N+1 when N is even and is N when
00086 *            is odd. See the Note below for more details.
00087 *            Unchanged on exit.
00088 *
00089 *  WORK      (workspace) REAL array, dimension (LWORK),
00090 *            where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
00091 *            WORK is not referenced.
00092 *
00093 *  Further Details
00094 *  ===============
00095 *
00096 *  We first consider Standard Packed Format when N is even.
00097 *  We give an example where N = 6.
00098 *
00099 *      AP is Upper             AP is Lower
00100 *
00101 *   00 01 02 03 04 05       00
00102 *      11 12 13 14 15       10 11
00103 *         22 23 24 25       20 21 22
00104 *            33 34 35       30 31 32 33
00105 *               44 45       40 41 42 43 44
00106 *                  55       50 51 52 53 54 55
00107 *
00108 *
00109 *  Let TRANSR = 'N'. RFP holds AP as follows:
00110 *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
00111 *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
00112 *  conjugate-transpose of the first three columns of AP upper.
00113 *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
00114 *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
00115 *  conjugate-transpose of the last three columns of AP lower.
00116 *  To denote conjugate we place -- above the element. This covers the
00117 *  case N even and TRANSR = 'N'.
00118 *
00119 *         RFP A                   RFP A
00120 *
00121 *                                -- -- --
00122 *        03 04 05                33 43 53
00123 *                                   -- --
00124 *        13 14 15                00 44 54
00125 *                                      --
00126 *        23 24 25                10 11 55
00127 *
00128 *        33 34 35                20 21 22
00129 *        --
00130 *        00 44 45                30 31 32
00131 *        -- --
00132 *        01 11 55                40 41 42
00133 *        -- -- --
00134 *        02 12 22                50 51 52
00135 *
00136 *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
00137 *  transpose of RFP A above. One therefore gets:
00138 *
00139 *
00140 *           RFP A                   RFP A
00141 *
00142 *     -- -- -- --                -- -- -- -- -- --
00143 *     03 13 23 33 00 01 02    33 00 10 20 30 40 50
00144 *     -- -- -- -- --                -- -- -- -- --
00145 *     04 14 24 34 44 11 12    43 44 11 21 31 41 51
00146 *     -- -- -- -- -- --                -- -- -- --
00147 *     05 15 25 35 45 55 22    53 54 55 22 32 42 52
00148 *
00149 *
00150 *  We next  consider Standard Packed Format when N is odd.
00151 *  We give an example where N = 5.
00152 *
00153 *     AP is Upper                 AP is Lower
00154 *
00155 *   00 01 02 03 04              00
00156 *      11 12 13 14              10 11
00157 *         22 23 24              20 21 22
00158 *            33 34              30 31 32 33
00159 *               44              40 41 42 43 44
00160 *
00161 *
00162 *  Let TRANSR = 'N'. RFP holds AP as follows:
00163 *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
00164 *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
00165 *  conjugate-transpose of the first two   columns of AP upper.
00166 *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
00167 *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
00168 *  conjugate-transpose of the last two   columns of AP lower.
00169 *  To denote conjugate we place -- above the element. This covers the
00170 *  case N odd  and TRANSR = 'N'.
00171 *
00172 *         RFP A                   RFP A
00173 *
00174 *                                   -- --
00175 *        02 03 04                00 33 43
00176 *                                      --
00177 *        12 13 14                10 11 44
00178 *
00179 *        22 23 24                20 21 22
00180 *        --
00181 *        00 33 34                30 31 32
00182 *        -- --
00183 *        01 11 44                40 41 42
00184 *
00185 *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
00186 *  transpose of RFP A above. One therefore gets:
00187 *
00188 *
00189 *           RFP A                   RFP A
00190 *
00191 *     -- -- --                   -- -- -- -- -- --
00192 *     02 12 22 00 01             00 10 20 30 40 50
00193 *     -- -- -- --                   -- -- -- -- --
00194 *     03 13 23 33 11             33 11 21 31 41 51
00195 *     -- -- -- -- --                   -- -- -- --
00196 *     04 14 24 34 44             43 44 22 32 42 52
00197 *
00198 *  =====================================================================
00199 *
00200 *     .. Parameters ..
00201       REAL               ONE, ZERO
00202       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
00203 *     ..
00204 *     .. Local Scalars ..
00205       INTEGER            I, J, IFM, ILU, NOE, N1, K, L, LDA
00206       REAL               SCALE, S, VALUE, AA
00207 *     ..
00208 *     .. External Functions ..
00209       LOGICAL            LSAME
00210       INTEGER            ISAMAX
00211       EXTERNAL           LSAME, ISAMAX
00212 *     ..
00213 *     .. External Subroutines ..
00214       EXTERNAL           CLASSQ
00215 *     ..
00216 *     .. Intrinsic Functions ..
00217       INTRINSIC          ABS, REAL, MAX, SQRT
00218 *     ..
00219 *     .. Executable Statements ..
00220 *
00221       IF( N.EQ.0 ) THEN
00222          CLANHF = ZERO
00223          RETURN
00224       END IF
00225 *
00226 *     set noe = 1 if n is odd. if n is even set noe=0
00227 *
00228       NOE = 1
00229       IF( MOD( N, 2 ).EQ.0 )
00230      +   NOE = 0
00231 *
00232 *     set ifm = 0 when form='C' or 'c' and 1 otherwise
00233 *
00234       IFM = 1
00235       IF( LSAME( TRANSR, 'C' ) )
00236      +   IFM = 0
00237 *
00238 *     set ilu = 0 when uplo='U or 'u' and 1 otherwise
00239 *
00240       ILU = 1
00241       IF( LSAME( UPLO, 'U' ) )
00242      +   ILU = 0
00243 *
00244 *     set lda = (n+1)/2 when ifm = 0
00245 *     set lda = n when ifm = 1 and noe = 1
00246 *     set lda = n+1 when ifm = 1 and noe = 0
00247 *
00248       IF( IFM.EQ.1 ) THEN
00249          IF( NOE.EQ.1 ) THEN
00250             LDA = N
00251          ELSE
00252 *           noe=0
00253             LDA = N + 1
00254          END IF
00255       ELSE
00256 *        ifm=0
00257          LDA = ( N+1 ) / 2
00258       END IF
00259 *
00260       IF( LSAME( NORM, 'M' ) ) THEN
00261 *
00262 *       Find max(abs(A(i,j))).
00263 *
00264          K = ( N+1 ) / 2
00265          VALUE = ZERO
00266          IF( NOE.EQ.1 ) THEN
00267 *           n is odd & n = k + k - 1
00268             IF( IFM.EQ.1 ) THEN
00269 *              A is n by k
00270                IF( ILU.EQ.1 ) THEN
00271 *                 uplo ='L'
00272                   J = 0
00273 *                 -> L(0,0)
00274                   VALUE = MAX( VALUE, ABS( REAL( A( J+J*LDA ) ) ) )
00275                   DO I = 1, N - 1
00276                      VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00277                   END DO
00278                   DO J = 1, K - 1
00279                      DO I = 0, J - 2
00280                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00281                      END DO
00282                      I = J - 1
00283 *                    L(k+j,k+j)
00284                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00285                      I = J
00286 *                    -> L(j,j)
00287                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00288                      DO I = J + 1, N - 1
00289                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00290                      END DO
00291                   END DO
00292                ELSE
00293 *                 uplo = 'U'
00294                   DO J = 0, K - 2
00295                      DO I = 0, K + J - 2
00296                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00297                      END DO
00298                      I = K + J - 1
00299 *                    -> U(i,i)
00300                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00301                      I = I + 1
00302 *                    =k+j; i -> U(j,j)
00303                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00304                      DO I = K + J + 1, N - 1
00305                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00306                      END DO
00307                   END DO
00308                   DO I = 0, N - 2
00309                      VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00310 *                    j=k-1
00311                   END DO
00312 *                 i=n-1 -> U(n-1,n-1)
00313                   VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00314                END IF
00315             ELSE
00316 *              xpose case; A is k by n
00317                IF( ILU.EQ.1 ) THEN
00318 *                 uplo ='L'
00319                   DO J = 0, K - 2
00320                      DO I = 0, J - 1
00321                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00322                      END DO
00323                      I = J
00324 *                    L(i,i)
00325                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00326                      I = J + 1
00327 *                    L(j+k,j+k)
00328                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00329                      DO I = J + 2, K - 1
00330                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00331                      END DO
00332                   END DO
00333                   J = K - 1
00334                   DO I = 0, K - 2
00335                      VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00336                   END DO
00337                   I = K - 1
00338 *                 -> L(i,i) is at A(i,j)
00339                   VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00340                   DO J = K, N - 1
00341                      DO I = 0, K - 1
00342                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00343                      END DO
00344                   END DO
00345                ELSE
00346 *                 uplo = 'U'
00347                   DO J = 0, K - 2
00348                      DO I = 0, K - 1
00349                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00350                      END DO
00351                   END DO
00352                   J = K - 1
00353 *                 -> U(j,j) is at A(0,j)
00354                   VALUE = MAX( VALUE, ABS( REAL( A( 0+J*LDA ) ) ) )
00355                   DO I = 1, K - 1
00356                      VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00357                   END DO
00358                   DO J = K, N - 1
00359                      DO I = 0, J - K - 1
00360                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00361                      END DO
00362                      I = J - K
00363 *                    -> U(i,i) at A(i,j)
00364                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00365                      I = J - K + 1
00366 *                    U(j,j)
00367                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00368                      DO I = J - K + 2, K - 1
00369                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00370                      END DO
00371                   END DO
00372                END IF
00373             END IF
00374          ELSE
00375 *           n is even & k = n/2
00376             IF( IFM.EQ.1 ) THEN
00377 *              A is n+1 by k
00378                IF( ILU.EQ.1 ) THEN
00379 *                 uplo ='L'
00380                   J = 0
00381 *                 -> L(k,k) & j=1 -> L(0,0)
00382                   VALUE = MAX( VALUE, ABS( REAL( A( J+J*LDA ) ) ) )
00383                   VALUE = MAX( VALUE, ABS( REAL( A( J+1+J*LDA ) ) ) )
00384                   DO I = 2, N
00385                      VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00386                   END DO
00387                   DO J = 1, K - 1
00388                      DO I = 0, J - 1
00389                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00390                      END DO
00391                      I = J
00392 *                    L(k+j,k+j)
00393                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00394                      I = J + 1
00395 *                    -> L(j,j)
00396                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00397                      DO I = J + 2, N
00398                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00399                      END DO
00400                   END DO
00401                ELSE
00402 *                 uplo = 'U'
00403                   DO J = 0, K - 2
00404                      DO I = 0, K + J - 1
00405                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00406                      END DO
00407                      I = K + J
00408 *                    -> U(i,i)
00409                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00410                      I = I + 1
00411 *                    =k+j+1; i -> U(j,j)
00412                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00413                      DO I = K + J + 2, N
00414                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00415                      END DO
00416                   END DO
00417                   DO I = 0, N - 2
00418                      VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00419 *                    j=k-1
00420                   END DO
00421 *                 i=n-1 -> U(n-1,n-1)
00422                   VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00423                   I = N
00424 *                 -> U(k-1,k-1)
00425                   VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00426                END IF
00427             ELSE
00428 *              xpose case; A is k by n+1
00429                IF( ILU.EQ.1 ) THEN
00430 *                 uplo ='L'
00431                   J = 0
00432 *                 -> L(k,k) at A(0,0)
00433                   VALUE = MAX( VALUE, ABS( REAL( A( J+J*LDA ) ) ) )
00434                   DO I = 1, K - 1
00435                      VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00436                   END DO
00437                   DO J = 1, K - 1
00438                      DO I = 0, J - 2
00439                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00440                      END DO
00441                      I = J - 1
00442 *                    L(i,i)
00443                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00444                      I = J
00445 *                    L(j+k,j+k)
00446                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00447                      DO I = J + 1, K - 1
00448                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00449                      END DO
00450                   END DO
00451                   J = K
00452                   DO I = 0, K - 2
00453                      VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00454                   END DO
00455                   I = K - 1
00456 *                 -> L(i,i) is at A(i,j)
00457                   VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00458                   DO J = K + 1, N
00459                      DO I = 0, K - 1
00460                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00461                      END DO
00462                   END DO
00463                ELSE
00464 *                 uplo = 'U'
00465                   DO J = 0, K - 1
00466                      DO I = 0, K - 1
00467                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00468                      END DO
00469                   END DO
00470                   J = K
00471 *                 -> U(j,j) is at A(0,j)
00472                   VALUE = MAX( VALUE, ABS( REAL( A( 0+J*LDA ) ) ) )
00473                   DO I = 1, K - 1
00474                      VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00475                   END DO
00476                   DO J = K + 1, N - 1
00477                      DO I = 0, J - K - 2
00478                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00479                      END DO
00480                      I = J - K - 1
00481 *                    -> U(i,i) at A(i,j)
00482                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00483                      I = J - K
00484 *                    U(j,j)
00485                      VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00486                      DO I = J - K + 1, K - 1
00487                         VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00488                      END DO
00489                   END DO
00490                   J = N
00491                   DO I = 0, K - 2
00492                      VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
00493                   END DO
00494                   I = K - 1
00495 *                 U(k,k) at A(i,j)
00496                   VALUE = MAX( VALUE, ABS( REAL( A( I+J*LDA ) ) ) )
00497                END IF
00498             END IF
00499          END IF
00500       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
00501      +         ( NORM.EQ.'1' ) ) THEN
00502 *
00503 *       Find normI(A) ( = norm1(A), since A is Hermitian).
00504 *
00505          IF( IFM.EQ.1 ) THEN
00506 *           A is 'N'
00507             K = N / 2
00508             IF( NOE.EQ.1 ) THEN
00509 *              n is odd & A is n by (n+1)/2
00510                IF( ILU.EQ.0 ) THEN
00511 *                 uplo = 'U'
00512                   DO I = 0, K - 1
00513                      WORK( I ) = ZERO
00514                   END DO
00515                   DO J = 0, K
00516                      S = ZERO
00517                      DO I = 0, K + J - 1
00518                         AA = ABS( A( I+J*LDA ) )
00519 *                       -> A(i,j+k)
00520                         S = S + AA
00521                         WORK( I ) = WORK( I ) + AA
00522                      END DO
00523                      AA = ABS( REAL( A( I+J*LDA ) ) )
00524 *                    -> A(j+k,j+k)
00525                      WORK( J+K ) = S + AA
00526                      IF( I.EQ.K+K )
00527      +                  GO TO 10
00528                      I = I + 1
00529                      AA = ABS( REAL( A( I+J*LDA ) ) )
00530 *                    -> A(j,j)
00531                      WORK( J ) = WORK( J ) + AA
00532                      S = ZERO
00533                      DO L = J + 1, K - 1
00534                         I = I + 1
00535                         AA = ABS( A( I+J*LDA ) )
00536 *                       -> A(l,j)
00537                         S = S + AA
00538                         WORK( L ) = WORK( L ) + AA
00539                      END DO
00540                      WORK( J ) = WORK( J ) + S
00541                   END DO
00542    10             CONTINUE
00543                   I = ISAMAX( N, WORK, 1 )
00544                   VALUE = WORK( I-1 )
00545                ELSE
00546 *                 ilu = 1 & uplo = 'L'
00547                   K = K + 1
00548 *                 k=(n+1)/2 for n odd and ilu=1
00549                   DO I = K, N - 1
00550                      WORK( I ) = ZERO
00551                   END DO
00552                   DO J = K - 1, 0, -1
00553                      S = ZERO
00554                      DO I = 0, J - 2
00555                         AA = ABS( A( I+J*LDA ) )
00556 *                       -> A(j+k,i+k)
00557                         S = S + AA
00558                         WORK( I+K ) = WORK( I+K ) + AA
00559                      END DO
00560                      IF( J.GT.0 ) THEN
00561                         AA = ABS( REAL( A( I+J*LDA ) ) )
00562 *                       -> A(j+k,j+k)
00563                         S = S + AA
00564                         WORK( I+K ) = WORK( I+K ) + S
00565 *                       i=j
00566                         I = I + 1
00567                      END IF
00568                      AA = ABS( REAL( A( I+J*LDA ) ) )
00569 *                    -> A(j,j)
00570                      WORK( J ) = AA
00571                      S = ZERO
00572                      DO L = J + 1, N - 1
00573                         I = I + 1
00574                         AA = ABS( A( I+J*LDA ) )
00575 *                       -> A(l,j)
00576                         S = S + AA
00577                         WORK( L ) = WORK( L ) + AA
00578                      END DO
00579                      WORK( J ) = WORK( J ) + S
00580                   END DO
00581                   I = ISAMAX( N, WORK, 1 )
00582                   VALUE = WORK( I-1 )
00583                END IF
00584             ELSE
00585 *              n is even & A is n+1 by k = n/2
00586                IF( ILU.EQ.0 ) THEN
00587 *                 uplo = 'U'
00588                   DO I = 0, K - 1
00589                      WORK( I ) = ZERO
00590                   END DO
00591                   DO J = 0, K - 1
00592                      S = ZERO
00593                      DO I = 0, K + J - 1
00594                         AA = ABS( A( I+J*LDA ) )
00595 *                       -> A(i,j+k)
00596                         S = S + AA
00597                         WORK( I ) = WORK( I ) + AA
00598                      END DO
00599                      AA = ABS( REAL( A( I+J*LDA ) ) )
00600 *                    -> A(j+k,j+k)
00601                      WORK( J+K ) = S + AA
00602                      I = I + 1
00603                      AA = ABS( REAL( A( I+J*LDA ) ) )
00604 *                    -> A(j,j)
00605                      WORK( J ) = WORK( J ) + AA
00606                      S = ZERO
00607                      DO L = J + 1, K - 1
00608                         I = I + 1
00609                         AA = ABS( A( I+J*LDA ) )
00610 *                       -> A(l,j)
00611                         S = S + AA
00612                         WORK( L ) = WORK( L ) + AA
00613                      END DO
00614                      WORK( J ) = WORK( J ) + S
00615                   END DO
00616                   I = ISAMAX( N, WORK, 1 )
00617                   VALUE = WORK( I-1 )
00618                ELSE
00619 *                 ilu = 1 & uplo = 'L'
00620                   DO I = K, N - 1
00621                      WORK( I ) = ZERO
00622                   END DO
00623                   DO J = K - 1, 0, -1
00624                      S = ZERO
00625                      DO I = 0, J - 1
00626                         AA = ABS( A( I+J*LDA ) )
00627 *                       -> A(j+k,i+k)
00628                         S = S + AA
00629                         WORK( I+K ) = WORK( I+K ) + AA
00630                      END DO
00631                      AA = ABS( REAL( A( I+J*LDA ) ) )
00632 *                    -> A(j+k,j+k)
00633                      S = S + AA
00634                      WORK( I+K ) = WORK( I+K ) + S
00635 *                    i=j
00636                      I = I + 1
00637                      AA = ABS( REAL( A( I+J*LDA ) ) )
00638 *                    -> A(j,j)
00639                      WORK( J ) = AA
00640                      S = ZERO
00641                      DO L = J + 1, N - 1
00642                         I = I + 1
00643                         AA = ABS( A( I+J*LDA ) )
00644 *                       -> A(l,j)
00645                         S = S + AA
00646                         WORK( L ) = WORK( L ) + AA
00647                      END DO
00648                      WORK( J ) = WORK( J ) + S
00649                   END DO
00650                   I = ISAMAX( N, WORK, 1 )
00651                   VALUE = WORK( I-1 )
00652                END IF
00653             END IF
00654          ELSE
00655 *           ifm=0
00656             K = N / 2
00657             IF( NOE.EQ.1 ) THEN
00658 *              n is odd & A is (n+1)/2 by n
00659                IF( ILU.EQ.0 ) THEN
00660 *                 uplo = 'U'
00661                   N1 = K
00662 *                 n/2
00663                   K = K + 1
00664 *                 k is the row size and lda
00665                   DO I = N1, N - 1
00666                      WORK( I ) = ZERO
00667                   END DO
00668                   DO J = 0, N1 - 1
00669                      S = ZERO
00670                      DO I = 0, K - 1
00671                         AA = ABS( A( I+J*LDA ) )
00672 *                       A(j,n1+i)
00673                         WORK( I+N1 ) = WORK( I+N1 ) + AA
00674                         S = S + AA
00675                      END DO
00676                      WORK( J ) = S
00677                   END DO
00678 *                 j=n1=k-1 is special
00679                   S = ABS( REAL( A( 0+J*LDA ) ) )
00680 *                 A(k-1,k-1)
00681                   DO I = 1, K - 1
00682                      AA = ABS( A( I+J*LDA ) )
00683 *                    A(k-1,i+n1)
00684                      WORK( I+N1 ) = WORK( I+N1 ) + AA
00685                      S = S + AA
00686                   END DO
00687                   WORK( J ) = WORK( J ) + S
00688                   DO J = K, N - 1
00689                      S = ZERO
00690                      DO I = 0, J - K - 1
00691                         AA = ABS( A( I+J*LDA ) )
00692 *                       A(i,j-k)
00693                         WORK( I ) = WORK( I ) + AA
00694                         S = S + AA
00695                      END DO
00696 *                    i=j-k
00697                      AA = ABS( REAL( A( I+J*LDA ) ) )
00698 *                    A(j-k,j-k)
00699                      S = S + AA
00700                      WORK( J-K ) = WORK( J-K ) + S
00701                      I = I + 1
00702                      S = ABS( REAL( A( I+J*LDA ) ) )
00703 *                    A(j,j)
00704                      DO L = J + 1, N - 1
00705                         I = I + 1
00706                         AA = ABS( A( I+J*LDA ) )
00707 *                       A(j,l)
00708                         WORK( L ) = WORK( L ) + AA
00709                         S = S + AA
00710                      END DO
00711                      WORK( J ) = WORK( J ) + S
00712                   END DO
00713                   I = ISAMAX( N, WORK, 1 )
00714                   VALUE = WORK( I-1 )
00715                ELSE
00716 *                 ilu=1 & uplo = 'L'
00717                   K = K + 1
00718 *                 k=(n+1)/2 for n odd and ilu=1
00719                   DO I = K, N - 1
00720                      WORK( I ) = ZERO
00721                   END DO
00722                   DO J = 0, K - 2
00723 *                    process
00724                      S = ZERO
00725                      DO I = 0, J - 1
00726                         AA = ABS( A( I+J*LDA ) )
00727 *                       A(j,i)
00728                         WORK( I ) = WORK( I ) + AA
00729                         S = S + AA
00730                      END DO
00731                      AA = ABS( REAL( A( I+J*LDA ) ) )
00732 *                    i=j so process of A(j,j)
00733                      S = S + AA
00734                      WORK( J ) = S
00735 *                    is initialised here
00736                      I = I + 1
00737 *                    i=j process A(j+k,j+k)
00738                      AA = ABS( REAL( A( I+J*LDA ) ) )
00739                      S = AA
00740                      DO L = K + J + 1, N - 1
00741                         I = I + 1
00742                         AA = ABS( A( I+J*LDA ) )
00743 *                       A(l,k+j)
00744                         S = S + AA
00745                         WORK( L ) = WORK( L ) + AA
00746                      END DO
00747                      WORK( K+J ) = WORK( K+J ) + S
00748                   END DO
00749 *                 j=k-1 is special :process col A(k-1,0:k-1)
00750                   S = ZERO
00751                   DO I = 0, K - 2
00752                      AA = ABS( A( I+J*LDA ) )
00753 *                    A(k,i)
00754                      WORK( I ) = WORK( I ) + AA
00755                      S = S + AA
00756                   END DO
00757 *                 i=k-1
00758                   AA = ABS( REAL( A( I+J*LDA ) ) )
00759 *                 A(k-1,k-1)
00760                   S = S + AA
00761                   WORK( I ) = S
00762 *                 done with col j=k+1
00763                   DO J = K, N - 1
00764 *                    process col j of A = A(j,0:k-1)
00765                      S = ZERO
00766                      DO I = 0, K - 1
00767                         AA = ABS( A( I+J*LDA ) )
00768 *                       A(j,i)
00769                         WORK( I ) = WORK( I ) + AA
00770                         S = S + AA
00771                      END DO
00772                      WORK( J ) = WORK( J ) + S
00773                   END DO
00774                   I = ISAMAX( N, WORK, 1 )
00775                   VALUE = WORK( I-1 )
00776                END IF
00777             ELSE
00778 *              n is even & A is k=n/2 by n+1
00779                IF( ILU.EQ.0 ) THEN
00780 *                 uplo = 'U'
00781                   DO I = K, N - 1
00782                      WORK( I ) = ZERO
00783                   END DO
00784                   DO J = 0, K - 1
00785                      S = ZERO
00786                      DO I = 0, K - 1
00787                         AA = ABS( A( I+J*LDA ) )
00788 *                       A(j,i+k)
00789                         WORK( I+K ) = WORK( I+K ) + AA
00790                         S = S + AA
00791                      END DO
00792                      WORK( J ) = S
00793                   END DO
00794 *                 j=k
00795                   AA = ABS( REAL( A( 0+J*LDA ) ) )
00796 *                 A(k,k)
00797                   S = AA
00798                   DO I = 1, K - 1
00799                      AA = ABS( A( I+J*LDA ) )
00800 *                    A(k,k+i)
00801                      WORK( I+K ) = WORK( I+K ) + AA
00802                      S = S + AA
00803                   END DO
00804                   WORK( J ) = WORK( J ) + S
00805                   DO J = K + 1, N - 1
00806                      S = ZERO
00807                      DO I = 0, J - 2 - K
00808                         AA = ABS( A( I+J*LDA ) )
00809 *                       A(i,j-k-1)
00810                         WORK( I ) = WORK( I ) + AA
00811                         S = S + AA
00812                      END DO
00813 *                    i=j-1-k
00814                      AA = ABS( REAL( A( I+J*LDA ) ) )
00815 *                    A(j-k-1,j-k-1)
00816                      S = S + AA
00817                      WORK( J-K-1 ) = WORK( J-K-1 ) + S
00818                      I = I + 1
00819                      AA = ABS( REAL( A( I+J*LDA ) ) )
00820 *                    A(j,j)
00821                      S = AA
00822                      DO L = J + 1, N - 1
00823                         I = I + 1
00824                         AA = ABS( A( I+J*LDA ) )
00825 *                       A(j,l)
00826                         WORK( L ) = WORK( L ) + AA
00827                         S = S + AA
00828                      END DO
00829                      WORK( J ) = WORK( J ) + S
00830                   END DO
00831 *                 j=n
00832                   S = ZERO
00833                   DO I = 0, K - 2
00834                      AA = ABS( A( I+J*LDA ) )
00835 *                    A(i,k-1)
00836                      WORK( I ) = WORK( I ) + AA
00837                      S = S + AA
00838                   END DO
00839 *                 i=k-1
00840                   AA = ABS( REAL( A( I+J*LDA ) ) )
00841 *                 A(k-1,k-1)
00842                   S = S + AA
00843                   WORK( I ) = WORK( I ) + S
00844                   I = ISAMAX( N, WORK, 1 )
00845                   VALUE = WORK( I-1 )
00846                ELSE
00847 *                 ilu=1 & uplo = 'L'
00848                   DO I = K, N - 1
00849                      WORK( I ) = ZERO
00850                   END DO
00851 *                 j=0 is special :process col A(k:n-1,k)
00852                   S = ABS( REAL( A( 0 ) ) )
00853 *                 A(k,k)
00854                   DO I = 1, K - 1
00855                      AA = ABS( A( I ) )
00856 *                    A(k+i,k)
00857                      WORK( I+K ) = WORK( I+K ) + AA
00858                      S = S + AA
00859                   END DO
00860                   WORK( K ) = WORK( K ) + S
00861                   DO J = 1, K - 1
00862 *                    process
00863                      S = ZERO
00864                      DO I = 0, J - 2
00865                         AA = ABS( A( I+J*LDA ) )
00866 *                       A(j-1,i)
00867                         WORK( I ) = WORK( I ) + AA
00868                         S = S + AA
00869                      END DO
00870                      AA = ABS( REAL( A( I+J*LDA ) ) )
00871 *                    i=j-1 so process of A(j-1,j-1)
00872                      S = S + AA
00873                      WORK( J-1 ) = S
00874 *                    is initialised here
00875                      I = I + 1
00876 *                    i=j process A(j+k,j+k)
00877                      AA = ABS( REAL( A( I+J*LDA ) ) )
00878                      S = AA
00879                      DO L = K + J + 1, N - 1
00880                         I = I + 1
00881                         AA = ABS( A( I+J*LDA ) )
00882 *                       A(l,k+j)
00883                         S = S + AA
00884                         WORK( L ) = WORK( L ) + AA
00885                      END DO
00886                      WORK( K+J ) = WORK( K+J ) + S
00887                   END DO
00888 *                 j=k is special :process col A(k,0:k-1)
00889                   S = ZERO
00890                   DO I = 0, K - 2
00891                      AA = ABS( A( I+J*LDA ) )
00892 *                    A(k,i)
00893                      WORK( I ) = WORK( I ) + AA
00894                      S = S + AA
00895                   END DO
00896 *
00897 *                 i=k-1
00898                   AA = ABS( REAL( A( I+J*LDA ) ) )
00899 *                 A(k-1,k-1)
00900                   S = S + AA
00901                   WORK( I ) = S
00902 *                 done with col j=k+1
00903                   DO J = K + 1, N
00904 *
00905 *                    process col j-1 of A = A(j-1,0:k-1)
00906                      S = ZERO
00907                      DO I = 0, K - 1
00908                         AA = ABS( A( I+J*LDA ) )
00909 *                       A(j-1,i)
00910                         WORK( I ) = WORK( I ) + AA
00911                         S = S + AA
00912                      END DO
00913                      WORK( J-1 ) = WORK( J-1 ) + S
00914                   END DO
00915                   I = ISAMAX( N, WORK, 1 )
00916                   VALUE = WORK( I-1 )
00917                END IF
00918             END IF
00919          END IF
00920       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
00921 *
00922 *       Find normF(A).
00923 *
00924          K = ( N+1 ) / 2
00925          SCALE = ZERO
00926          S = ONE
00927          IF( NOE.EQ.1 ) THEN
00928 *           n is odd
00929             IF( IFM.EQ.1 ) THEN
00930 *              A is normal & A is n by k
00931                IF( ILU.EQ.0 ) THEN
00932 *                 A is upper
00933                   DO J = 0, K - 3
00934                      CALL CLASSQ( K-J-2, A( K+J+1+J*LDA ), 1, SCALE, S )
00935 *                    L at A(k,0)
00936                   END DO
00937                   DO J = 0, K - 1
00938                      CALL CLASSQ( K+J-1, A( 0+J*LDA ), 1, SCALE, S )
00939 *                    trap U at A(0,0)
00940                   END DO
00941                   S = S + S
00942 *                 double s for the off diagonal elements
00943                   L = K - 1
00944 *                 -> U(k,k) at A(k-1,0)
00945                   DO I = 0, K - 2
00946                      AA = REAL( A( L ) )
00947 *                    U(k+i,k+i)
00948                      IF( AA.NE.ZERO ) THEN
00949                         IF( SCALE.LT.AA ) THEN
00950                            S = ONE + S*( SCALE / AA )**2
00951                            SCALE = AA
00952                         ELSE
00953                            S = S + ( AA / SCALE )**2
00954                         END IF
00955                      END IF
00956                      AA = REAL( A( L+1 ) )
00957 *                    U(i,i)
00958                      IF( AA.NE.ZERO ) THEN
00959                         IF( SCALE.LT.AA ) THEN
00960                            S = ONE + S*( SCALE / AA )**2
00961                            SCALE = AA
00962                         ELSE
00963                            S = S + ( AA / SCALE )**2
00964                         END IF
00965                      END IF
00966                      L = L + LDA + 1
00967                   END DO
00968                   AA = REAL( A( L ) )
00969 *                 U(n-1,n-1)
00970                   IF( AA.NE.ZERO ) THEN
00971                      IF( SCALE.LT.AA ) THEN
00972                         S = ONE + S*( SCALE / AA )**2
00973                         SCALE = AA
00974                      ELSE
00975                         S = S + ( AA / SCALE )**2
00976                      END IF
00977                   END IF
00978                ELSE
00979 *                 ilu=1 & A is lower
00980                   DO J = 0, K - 1
00981                      CALL CLASSQ( N-J-1, A( J+1+J*LDA ), 1, SCALE, S )
00982 *                    trap L at A(0,0)
00983                   END DO
00984                   DO J = 1, K - 2
00985                      CALL CLASSQ( J, A( 0+( 1+J )*LDA ), 1, SCALE, S )
00986 *                    U at A(0,1)
00987                   END DO
00988                   S = S + S
00989 *                 double s for the off diagonal elements
00990                   AA = REAL( A( 0 ) )
00991 *                 L(0,0) at A(0,0)
00992                   IF( AA.NE.ZERO ) THEN
00993                      IF( SCALE.LT.AA ) THEN
00994                         S = ONE + S*( SCALE / AA )**2
00995                         SCALE = AA
00996                      ELSE
00997                         S = S + ( AA / SCALE )**2
00998                      END IF
00999                   END IF
01000                   L = LDA
01001 *                 -> L(k,k) at A(0,1)
01002                   DO I = 1, K - 1
01003                      AA = REAL( A( L ) )
01004 *                    L(k-1+i,k-1+i)
01005                      IF( AA.NE.ZERO ) THEN
01006                         IF( SCALE.LT.AA ) THEN
01007                            S = ONE + S*( SCALE / AA )**2
01008                            SCALE = AA
01009                         ELSE
01010                            S = S + ( AA / SCALE )**2
01011                         END IF
01012                      END IF
01013                      AA = REAL( A( L+1 ) )
01014 *                    L(i,i)
01015                      IF( AA.NE.ZERO ) THEN
01016                         IF( SCALE.LT.AA ) THEN
01017                            S = ONE + S*( SCALE / AA )**2
01018                            SCALE = AA
01019                         ELSE
01020                            S = S + ( AA / SCALE )**2
01021                         END IF
01022                      END IF
01023                      L = L + LDA + 1
01024                   END DO
01025                END IF
01026             ELSE
01027 *              A is xpose & A is k by n
01028                IF( ILU.EQ.0 ) THEN
01029 *                 A' is upper
01030                   DO J = 1, K - 2
01031                      CALL CLASSQ( J, A( 0+( K+J )*LDA ), 1, SCALE, S )
01032 *                    U at A(0,k)
01033                   END DO
01034                   DO J = 0, K - 2
01035                      CALL CLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
01036 *                    k by k-1 rect. at A(0,0)
01037                   END DO
01038                   DO J = 0, K - 2
01039                      CALL CLASSQ( K-J-1, A( J+1+( J+K-1 )*LDA ), 1,
01040      +                            SCALE, S )
01041 *                    L at A(0,k-1)
01042                   END DO
01043                   S = S + S
01044 *                 double s for the off diagonal elements
01045                   L = 0 + K*LDA - LDA
01046 *                 -> U(k-1,k-1) at A(0,k-1)
01047                   AA = REAL( A( L ) )
01048 *                 U(k-1,k-1)
01049                   IF( AA.NE.ZERO ) THEN
01050                      IF( SCALE.LT.AA ) THEN
01051                         S = ONE + S*( SCALE / AA )**2
01052                         SCALE = AA
01053                      ELSE
01054                         S = S + ( AA / SCALE )**2
01055                      END IF
01056                   END IF
01057                   L = L + LDA
01058 *                 -> U(0,0) at A(0,k)
01059                   DO J = K, N - 1
01060                      AA = REAL( A( L ) )
01061 *                    -> U(j-k,j-k)
01062                      IF( AA.NE.ZERO ) THEN
01063                         IF( SCALE.LT.AA ) THEN
01064                            S = ONE + S*( SCALE / AA )**2
01065                            SCALE = AA
01066                         ELSE
01067                            S = S + ( AA / SCALE )**2
01068                         END IF
01069                      END IF
01070                      AA = REAL( A( L+1 ) )
01071 *                    -> U(j,j)
01072                      IF( AA.NE.ZERO ) THEN
01073                         IF( SCALE.LT.AA ) THEN
01074                            S = ONE + S*( SCALE / AA )**2
01075                            SCALE = AA
01076                         ELSE
01077                            S = S + ( AA / SCALE )**2
01078                         END IF
01079                      END IF
01080                      L = L + LDA + 1
01081                   END DO
01082                ELSE
01083 *                 A' is lower
01084                   DO J = 1, K - 1
01085                      CALL CLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
01086 *                    U at A(0,0)
01087                   END DO
01088                   DO J = K, N - 1
01089                      CALL CLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
01090 *                    k by k-1 rect. at A(0,k)
01091                   END DO
01092                   DO J = 0, K - 3
01093                      CALL CLASSQ( K-J-2, A( J+2+J*LDA ), 1, SCALE, S )
01094 *                    L at A(1,0)
01095                   END DO
01096                   S = S + S
01097 *                 double s for the off diagonal elements
01098                   L = 0
01099 *                 -> L(0,0) at A(0,0)
01100                   DO I = 0, K - 2
01101                      AA = REAL( A( L ) )
01102 *                    L(i,i)
01103                      IF( AA.NE.ZERO ) THEN
01104                         IF( SCALE.LT.AA ) THEN
01105                            S = ONE + S*( SCALE / AA )**2
01106                            SCALE = AA
01107                         ELSE
01108                            S = S + ( AA / SCALE )**2
01109                         END IF
01110                      END IF
01111                      AA = REAL( A( L+1 ) )
01112 *                    L(k+i,k+i)
01113                      IF( AA.NE.ZERO ) THEN
01114                         IF( SCALE.LT.AA ) THEN
01115                            S = ONE + S*( SCALE / AA )**2
01116                            SCALE = AA
01117                         ELSE
01118                            S = S + ( AA / SCALE )**2
01119                         END IF
01120                      END IF
01121                      L = L + LDA + 1
01122                   END DO
01123 *                 L-> k-1 + (k-1)*lda or L(k-1,k-1) at A(k-1,k-1)
01124                   AA = REAL( A( L ) )
01125 *                 L(k-1,k-1) at A(k-1,k-1)
01126                   IF( AA.NE.ZERO ) THEN
01127                      IF( SCALE.LT.AA ) THEN
01128                         S = ONE + S*( SCALE / AA )**2
01129                         SCALE = AA
01130                      ELSE
01131                         S = S + ( AA / SCALE )**2
01132                      END IF
01133                   END IF
01134                END IF
01135             END IF
01136          ELSE
01137 *           n is even
01138             IF( IFM.EQ.1 ) THEN
01139 *              A is normal
01140                IF( ILU.EQ.0 ) THEN
01141 *                 A is upper
01142                   DO J = 0, K - 2
01143                      CALL CLASSQ( K-J-1, A( K+J+2+J*LDA ), 1, SCALE, S )
01144 *                 L at A(k+1,0)
01145                   END DO
01146                   DO J = 0, K - 1
01147                      CALL CLASSQ( K+J, A( 0+J*LDA ), 1, SCALE, S )
01148 *                 trap U at A(0,0)
01149                   END DO
01150                   S = S + S
01151 *                 double s for the off diagonal elements
01152                   L = K
01153 *                 -> U(k,k) at A(k,0)
01154                   DO I = 0, K - 1
01155                      AA = REAL( A( L ) )
01156 *                    U(k+i,k+i)
01157                      IF( AA.NE.ZERO ) THEN
01158                         IF( SCALE.LT.AA ) THEN
01159                            S = ONE + S*( SCALE / AA )**2
01160                            SCALE = AA
01161                         ELSE
01162                            S = S + ( AA / SCALE )**2
01163                         END IF
01164                      END IF
01165                      AA = REAL( A( L+1 ) )
01166 *                    U(i,i)
01167                      IF( AA.NE.ZERO ) THEN
01168                         IF( SCALE.LT.AA ) THEN
01169                            S = ONE + S*( SCALE / AA )**2
01170                            SCALE = AA
01171                         ELSE
01172                            S = S + ( AA / SCALE )**2
01173                         END IF
01174                      END IF
01175                      L = L + LDA + 1
01176                   END DO
01177                ELSE
01178 *                 ilu=1 & A is lower
01179                   DO J = 0, K - 1
01180                      CALL CLASSQ( N-J-1, A( J+2+J*LDA ), 1, SCALE, S )
01181 *                    trap L at A(1,0)
01182                   END DO
01183                   DO J = 1, K - 1
01184                      CALL CLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
01185 *                    U at A(0,0)
01186                   END DO
01187                   S = S + S
01188 *                 double s for the off diagonal elements
01189                   L = 0
01190 *                 -> L(k,k) at A(0,0)
01191                   DO I = 0, K - 1
01192                      AA = REAL( A( L ) )
01193 *                    L(k-1+i,k-1+i)
01194                      IF( AA.NE.ZERO ) THEN
01195                         IF( SCALE.LT.AA ) THEN
01196                            S = ONE + S*( SCALE / AA )**2
01197                            SCALE = AA
01198                         ELSE
01199                            S = S + ( AA / SCALE )**2
01200                         END IF
01201                      END IF
01202                      AA = REAL( A( L+1 ) )
01203 *                    L(i,i)
01204                      IF( AA.NE.ZERO ) THEN
01205                         IF( SCALE.LT.AA ) THEN
01206                            S = ONE + S*( SCALE / AA )**2
01207                            SCALE = AA
01208                         ELSE
01209                            S = S + ( AA / SCALE )**2
01210                         END IF
01211                      END IF
01212                      L = L + LDA + 1
01213                   END DO
01214                END IF
01215             ELSE
01216 *              A is xpose
01217                IF( ILU.EQ.0 ) THEN
01218 *                 A' is upper
01219                   DO J = 1, K - 1
01220                      CALL CLASSQ( J, A( 0+( K+1+J )*LDA ), 1, SCALE, S )
01221 *                 U at A(0,k+1)
01222                   END DO
01223                   DO J = 0, K - 1
01224                      CALL CLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
01225 *                 k by k rect. at A(0,0)
01226                   END DO
01227                   DO J = 0, K - 2
01228                      CALL CLASSQ( K-J-1, A( J+1+( J+K )*LDA ), 1, SCALE,
01229      +                            S )
01230 *                 L at A(0,k)
01231                   END DO
01232                   S = S + S
01233 *                 double s for the off diagonal elements
01234                   L = 0 + K*LDA
01235 *                 -> U(k,k) at A(0,k)
01236                   AA = REAL( A( L ) )
01237 *                 U(k,k)
01238                   IF( AA.NE.ZERO ) THEN
01239                      IF( SCALE.LT.AA ) THEN
01240                         S = ONE + S*( SCALE / AA )**2
01241                         SCALE = AA
01242                      ELSE
01243                         S = S + ( AA / SCALE )**2
01244                      END IF
01245                   END IF
01246                   L = L + LDA
01247 *                 -> U(0,0) at A(0,k+1)
01248                   DO J = K + 1, N - 1
01249                      AA = REAL( A( L ) )
01250 *                    -> U(j-k-1,j-k-1)
01251                      IF( AA.NE.ZERO ) THEN
01252                         IF( SCALE.LT.AA ) THEN
01253                            S = ONE + S*( SCALE / AA )**2
01254                            SCALE = AA
01255                         ELSE
01256                            S = S + ( AA / SCALE )**2
01257                         END IF
01258                      END IF
01259                      AA = REAL( A( L+1 ) )
01260 *                    -> U(j,j)
01261                      IF( AA.NE.ZERO ) THEN
01262                         IF( SCALE.LT.AA ) THEN
01263                            S = ONE + S*( SCALE / AA )**2
01264                            SCALE = AA
01265                         ELSE
01266                            S = S + ( AA / SCALE )**2
01267                         END IF
01268                      END IF
01269                      L = L + LDA + 1
01270                   END DO
01271 *                 L=k-1+n*lda
01272 *                 -> U(k-1,k-1) at A(k-1,n)
01273                   AA = REAL( A( L ) )
01274 *                 U(k,k)
01275                   IF( AA.NE.ZERO ) THEN
01276                      IF( SCALE.LT.AA ) THEN
01277                         S = ONE + S*( SCALE / AA )**2
01278                         SCALE = AA
01279                      ELSE
01280                         S = S + ( AA / SCALE )**2
01281                      END IF
01282                   END IF
01283                ELSE
01284 *                 A' is lower
01285                   DO J = 1, K - 1
01286                      CALL CLASSQ( J, A( 0+( J+1 )*LDA ), 1, SCALE, S )
01287 *                 U at A(0,1)
01288                   END DO
01289                   DO J = K + 1, N
01290                      CALL CLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
01291 *                 k by k rect. at A(0,k+1)
01292                   END DO
01293                   DO J = 0, K - 2
01294                      CALL CLASSQ( K-J-1, A( J+1+J*LDA ), 1, SCALE, S )
01295 *                 L at A(0,0)
01296                   END DO
01297                   S = S + S
01298 *                 double s for the off diagonal elements
01299                   L = 0
01300 *                 -> L(k,k) at A(0,0)
01301                   AA = REAL( A( L ) )
01302 *                 L(k,k) at A(0,0)
01303                   IF( AA.NE.ZERO ) THEN
01304                      IF( SCALE.LT.AA ) THEN
01305                         S = ONE + S*( SCALE / AA )**2
01306                         SCALE = AA
01307                      ELSE
01308                         S = S + ( AA / SCALE )**2
01309                      END IF
01310                   END IF
01311                   L = LDA
01312 *                 -> L(0,0) at A(0,1)
01313                   DO I = 0, K - 2
01314                      AA = REAL( A( L ) )
01315 *                    L(i,i)
01316                      IF( AA.NE.ZERO ) THEN
01317                         IF( SCALE.LT.AA ) THEN
01318                            S = ONE + S*( SCALE / AA )**2
01319                            SCALE = AA
01320                         ELSE
01321                            S = S + ( AA / SCALE )**2
01322                         END IF
01323                      END IF
01324                      AA = REAL( A( L+1 ) )
01325 *                    L(k+i+1,k+i+1)
01326                      IF( AA.NE.ZERO ) THEN
01327                         IF( SCALE.LT.AA ) THEN
01328                            S = ONE + S*( SCALE / AA )**2
01329                            SCALE = AA
01330                         ELSE
01331                            S = S + ( AA / SCALE )**2
01332                         END IF
01333                      END IF
01334                      L = L + LDA + 1
01335                   END DO
01336 *                 L-> k - 1 + k*lda or L(k-1,k-1) at A(k-1,k)
01337                   AA = REAL( A( L ) )
01338 *                 L(k-1,k-1) at A(k-1,k)
01339                   IF( AA.NE.ZERO ) THEN
01340                      IF( SCALE.LT.AA ) THEN
01341                         S = ONE + S*( SCALE / AA )**2
01342                         SCALE = AA
01343                      ELSE
01344                         S = S + ( AA / SCALE )**2
01345                      END IF
01346                   END IF
01347                END IF
01348             END IF
01349          END IF
01350          VALUE = SCALE*SQRT( S )
01351       END IF
01352 *
01353       CLANHF = VALUE
01354       RETURN
01355 *
01356 *     End of CLANHF
01357 *
01358       END
 All Files Functions