LAPACK 3.3.0
|
00001 REAL FUNCTION SQPT01( M, N, K, A, AF, LDA, TAU, JPVT, 00002 $ WORK, LWORK ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 INTEGER K, LDA, LWORK, M, N 00010 * .. 00011 * .. Array Arguments .. 00012 INTEGER JPVT( * ) 00013 REAL A( LDA, * ), AF( LDA, * ), TAU( * ), 00014 $ WORK( LWORK ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * SQPT01 tests the QR-factorization with pivoting of a matrix A. The 00021 * array AF contains the (possibly partial) QR-factorization of A, where 00022 * the upper triangle of AF(1:k,1:k) is a partial triangular factor, 00023 * the entries below the diagonal in the first k columns are the 00024 * Householder vectors, and the rest of AF contains a partially updated 00025 * matrix. 00026 * 00027 * This function returns ||A*P - Q*R||/(||norm(A)||*eps*M) 00028 * 00029 * Arguments 00030 * ========= 00031 * 00032 * M (input) INTEGER 00033 * The number of rows of the matrices A and AF. 00034 * 00035 * N (input) INTEGER 00036 * The number of columns of the matrices A and AF. 00037 * 00038 * K (input) INTEGER 00039 * The number of columns of AF that have been reduced 00040 * to upper triangular form. 00041 * 00042 * A (input) REAL array, dimension (LDA, N) 00043 * The original matrix A. 00044 * 00045 * AF (input) REAL array, dimension (LDA,N) 00046 * The (possibly partial) output of SGEQPF. The upper triangle 00047 * of AF(1:k,1:k) is a partial triangular factor, the entries 00048 * below the diagonal in the first k columns are the Householder 00049 * vectors, and the rest of AF contains a partially updated 00050 * matrix. 00051 * 00052 * LDA (input) INTEGER 00053 * The leading dimension of the arrays A and AF. 00054 * 00055 * TAU (input) REAL array, dimension (K) 00056 * Details of the Householder transformations as returned by 00057 * SGEQPF. 00058 * 00059 * JPVT (input) INTEGER array, dimension (N) 00060 * Pivot information as returned by SGEQPF. 00061 * 00062 * WORK (workspace) REAL array, dimension (LWORK) 00063 * 00064 * LWORK (input) INTEGER 00065 * The length of the array WORK. LWORK >= M*N+N. 00066 * 00067 * ===================================================================== 00068 * 00069 * .. Parameters .. 00070 REAL ZERO, ONE 00071 PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) 00072 * .. 00073 * .. Local Scalars .. 00074 INTEGER I, INFO, J 00075 REAL NORMA 00076 * .. 00077 * .. Local Arrays .. 00078 REAL RWORK( 1 ) 00079 * .. 00080 * .. External Functions .. 00081 REAL SLAMCH, SLANGE 00082 EXTERNAL SLAMCH, SLANGE 00083 * .. 00084 * .. External Subroutines .. 00085 EXTERNAL SAXPY, SCOPY, SORMQR, XERBLA 00086 * .. 00087 * .. Intrinsic Functions .. 00088 INTRINSIC MAX, MIN, REAL 00089 * .. 00090 * .. Executable Statements .. 00091 * 00092 SQPT01 = ZERO 00093 * 00094 * Test if there is enough workspace 00095 * 00096 IF( LWORK.LT.M*N+N ) THEN 00097 CALL XERBLA( 'SQPT01', 10 ) 00098 RETURN 00099 END IF 00100 * 00101 * Quick return if possible 00102 * 00103 IF( M.LE.0 .OR. N.LE.0 ) 00104 $ RETURN 00105 * 00106 NORMA = SLANGE( 'One-norm', M, N, A, LDA, RWORK ) 00107 * 00108 DO 30 J = 1, K 00109 DO 10 I = 1, MIN( J, M ) 00110 WORK( ( J-1 )*M+I ) = AF( I, J ) 00111 10 CONTINUE 00112 DO 20 I = J + 1, M 00113 WORK( ( J-1 )*M+I ) = ZERO 00114 20 CONTINUE 00115 30 CONTINUE 00116 DO 40 J = K + 1, N 00117 CALL SCOPY( M, AF( 1, J ), 1, WORK( ( J-1 )*M+1 ), 1 ) 00118 40 CONTINUE 00119 * 00120 CALL SORMQR( 'Left', 'No transpose', M, N, K, AF, LDA, TAU, WORK, 00121 $ M, WORK( M*N+1 ), LWORK-M*N, INFO ) 00122 * 00123 DO 50 J = 1, N 00124 * 00125 * Compare i-th column of QR and jpvt(i)-th column of A 00126 * 00127 CALL SAXPY( M, -ONE, A( 1, JPVT( J ) ), 1, WORK( ( J-1 )*M+1 ), 00128 $ 1 ) 00129 50 CONTINUE 00130 * 00131 SQPT01 = SLANGE( 'One-norm', M, N, WORK, M, RWORK ) / 00132 $ ( REAL( MAX( M, N ) )*SLAMCH( 'Epsilon' ) ) 00133 IF( NORMA.NE.ZERO ) 00134 $ SQPT01 = SQPT01 / NORMA 00135 * 00136 RETURN 00137 * 00138 * End of SQPT01 00139 * 00140 END