LAPACK 3.3.0

cunmrq.f

Go to the documentation of this file.
00001       SUBROUTINE CUNMRQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
00002      $                   WORK, LWORK, INFO )
00003 *
00004 *  -- LAPACK routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       CHARACTER          SIDE, TRANS
00011       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
00012 *     ..
00013 *     .. Array Arguments ..
00014       COMPLEX            A( LDA, * ), C( LDC, * ), TAU( * ),
00015      $                   WORK( * )
00016 *     ..
00017 *
00018 *  Purpose
00019 *  =======
00020 *
00021 *  CUNMRQ overwrites the general complex M-by-N matrix C with
00022 *
00023 *                  SIDE = 'L'     SIDE = 'R'
00024 *  TRANS = 'N':      Q * C          C * Q
00025 *  TRANS = 'C':      Q**H * C       C * Q**H
00026 *
00027 *  where Q is a complex unitary matrix defined as the product of k
00028 *  elementary reflectors
00029 *
00030 *        Q = H(1)' H(2)' . . . H(k)'
00031 *
00032 *  as returned by CGERQF. Q is of order M if SIDE = 'L' and of order N
00033 *  if SIDE = 'R'.
00034 *
00035 *  Arguments
00036 *  =========
00037 *
00038 *  SIDE    (input) CHARACTER*1
00039 *          = 'L': apply Q or Q**H from the Left;
00040 *          = 'R': apply Q or Q**H from the Right.
00041 *
00042 *  TRANS   (input) CHARACTER*1
00043 *          = 'N':  No transpose, apply Q;
00044 *          = 'C':  Transpose, apply Q**H.
00045 *
00046 *  M       (input) INTEGER
00047 *          The number of rows of the matrix C. M >= 0.
00048 *
00049 *  N       (input) INTEGER
00050 *          The number of columns of the matrix C. N >= 0.
00051 *
00052 *  K       (input) INTEGER
00053 *          The number of elementary reflectors whose product defines
00054 *          the matrix Q.
00055 *          If SIDE = 'L', M >= K >= 0;
00056 *          if SIDE = 'R', N >= K >= 0.
00057 *
00058 *  A       (input) COMPLEX array, dimension
00059 *                               (LDA,M) if SIDE = 'L',
00060 *                               (LDA,N) if SIDE = 'R'
00061 *          The i-th row must contain the vector which defines the
00062 *          elementary reflector H(i), for i = 1,2,...,k, as returned by
00063 *          CGERQF in the last k rows of its array argument A.
00064 *          A is modified by the routine but restored on exit.
00065 *
00066 *  LDA     (input) INTEGER
00067 *          The leading dimension of the array A. LDA >= max(1,K).
00068 *
00069 *  TAU     (input) COMPLEX array, dimension (K)
00070 *          TAU(i) must contain the scalar factor of the elementary
00071 *          reflector H(i), as returned by CGERQF.
00072 *
00073 *  C       (input/output) COMPLEX array, dimension (LDC,N)
00074 *          On entry, the M-by-N matrix C.
00075 *          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
00076 *
00077 *  LDC     (input) INTEGER
00078 *          The leading dimension of the array C. LDC >= max(1,M).
00079 *
00080 *  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
00081 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
00082 *
00083 *  LWORK   (input) INTEGER
00084 *          The dimension of the array WORK.
00085 *          If SIDE = 'L', LWORK >= max(1,N);
00086 *          if SIDE = 'R', LWORK >= max(1,M).
00087 *          For optimum performance LWORK >= N*NB if SIDE = 'L', and
00088 *          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
00089 *          blocksize.
00090 *
00091 *          If LWORK = -1, then a workspace query is assumed; the routine
00092 *          only calculates the optimal size of the WORK array, returns
00093 *          this value as the first entry of the WORK array, and no error
00094 *          message related to LWORK is issued by XERBLA.
00095 *
00096 *  INFO    (output) INTEGER
00097 *          = 0:  successful exit
00098 *          < 0:  if INFO = -i, the i-th argument had an illegal value
00099 *
00100 *  =====================================================================
00101 *
00102 *     .. Parameters ..
00103       INTEGER            NBMAX, LDT
00104       PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
00105 *     ..
00106 *     .. Local Scalars ..
00107       LOGICAL            LEFT, LQUERY, NOTRAN
00108       CHARACTER          TRANST
00109       INTEGER            I, I1, I2, I3, IB, IINFO, IWS, LDWORK, LWKOPT,
00110      $                   MI, NB, NBMIN, NI, NQ, NW
00111 *     ..
00112 *     .. Local Arrays ..
00113       COMPLEX            T( LDT, NBMAX )
00114 *     ..
00115 *     .. External Functions ..
00116       LOGICAL            LSAME
00117       INTEGER            ILAENV
00118       EXTERNAL           LSAME, ILAENV
00119 *     ..
00120 *     .. External Subroutines ..
00121       EXTERNAL           CLARFB, CLARFT, CUNMR2, XERBLA
00122 *     ..
00123 *     .. Intrinsic Functions ..
00124       INTRINSIC          MAX, MIN
00125 *     ..
00126 *     .. Executable Statements ..
00127 *
00128 *     Test the input arguments
00129 *
00130       INFO = 0
00131       LEFT = LSAME( SIDE, 'L' )
00132       NOTRAN = LSAME( TRANS, 'N' )
00133       LQUERY = ( LWORK.EQ.-1 )
00134 *
00135 *     NQ is the order of Q and NW is the minimum dimension of WORK
00136 *
00137       IF( LEFT ) THEN
00138          NQ = M
00139          NW = MAX( 1, N )
00140       ELSE
00141          NQ = N
00142          NW = MAX( 1, M )
00143       END IF
00144       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
00145          INFO = -1
00146       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
00147          INFO = -2
00148       ELSE IF( M.LT.0 ) THEN
00149          INFO = -3
00150       ELSE IF( N.LT.0 ) THEN
00151          INFO = -4
00152       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
00153          INFO = -5
00154       ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
00155          INFO = -7
00156       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
00157          INFO = -10
00158       END IF
00159 *
00160       IF( INFO.EQ.0 ) THEN
00161          IF( M.EQ.0 .OR. N.EQ.0 ) THEN
00162             LWKOPT = 1
00163          ELSE
00164 *
00165 *           Determine the block size.  NB may be at most NBMAX, where
00166 *           NBMAX is used to define the local array T.
00167 *
00168             NB = MIN( NBMAX, ILAENV( 1, 'CUNMRQ', SIDE // TRANS, M, N,
00169      $                               K, -1 ) )
00170             LWKOPT = NW*NB
00171          END IF
00172          WORK( 1 ) = LWKOPT
00173 *
00174          IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
00175             INFO = -12
00176          END IF
00177       END IF
00178 *
00179       IF( INFO.NE.0 ) THEN
00180          CALL XERBLA( 'CUNMRQ', -INFO )
00181          RETURN
00182       ELSE IF( LQUERY ) THEN
00183          RETURN
00184       END IF
00185 *
00186 *     Quick return if possible
00187 *
00188       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
00189          RETURN
00190       END IF
00191 *
00192       NBMIN = 2
00193       LDWORK = NW
00194       IF( NB.GT.1 .AND. NB.LT.K ) THEN
00195          IWS = NW*NB
00196          IF( LWORK.LT.IWS ) THEN
00197             NB = LWORK / LDWORK
00198             NBMIN = MAX( 2, ILAENV( 2, 'CUNMRQ', SIDE // TRANS, M, N, K,
00199      $              -1 ) )
00200          END IF
00201       ELSE
00202          IWS = NW
00203       END IF
00204 *
00205       IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
00206 *
00207 *        Use unblocked code
00208 *
00209          CALL CUNMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
00210      $                IINFO )
00211       ELSE
00212 *
00213 *        Use blocked code
00214 *
00215          IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
00216      $       ( .NOT.LEFT .AND. NOTRAN ) ) THEN
00217             I1 = 1
00218             I2 = K
00219             I3 = NB
00220          ELSE
00221             I1 = ( ( K-1 ) / NB )*NB + 1
00222             I2 = 1
00223             I3 = -NB
00224          END IF
00225 *
00226          IF( LEFT ) THEN
00227             NI = N
00228          ELSE
00229             MI = M
00230          END IF
00231 *
00232          IF( NOTRAN ) THEN
00233             TRANST = 'C'
00234          ELSE
00235             TRANST = 'N'
00236          END IF
00237 *
00238          DO 10 I = I1, I2, I3
00239             IB = MIN( NB, K-I+1 )
00240 *
00241 *           Form the triangular factor of the block reflector
00242 *           H = H(i+ib-1) . . . H(i+1) H(i)
00243 *
00244             CALL CLARFT( 'Backward', 'Rowwise', NQ-K+I+IB-1, IB,
00245      $                   A( I, 1 ), LDA, TAU( I ), T, LDT )
00246             IF( LEFT ) THEN
00247 *
00248 *              H or H' is applied to C(1:m-k+i+ib-1,1:n)
00249 *
00250                MI = M - K + I + IB - 1
00251             ELSE
00252 *
00253 *              H or H' is applied to C(1:m,1:n-k+i+ib-1)
00254 *
00255                NI = N - K + I + IB - 1
00256             END IF
00257 *
00258 *           Apply H or H'
00259 *
00260             CALL CLARFB( SIDE, TRANST, 'Backward', 'Rowwise', MI, NI,
00261      $                   IB, A( I, 1 ), LDA, T, LDT, C, LDC, WORK,
00262      $                   LDWORK )
00263    10    CONTINUE
00264       END IF
00265       WORK( 1 ) = LWKOPT
00266       RETURN
00267 *
00268 *     End of CUNMRQ
00269 *
00270       END
 All Files Functions